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Abstract

Motivated by the orthogonal series density estimation in L2([0, 1], µ), in this project

we consider a new class of functions that we call the approximate sparsity class. This

new class is characterized by the rate of decay of the individual Fourier coefficients for

a given orthonormal basis. We establish the L2([0, 1], µ) metric entropy of such class,

with which we show the minimax rate of convergence. For the density subset in this

class, we propose an adaptive density estimator based on a hard-thresholding procedure

that achieves this minimax rate up to a log term.
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1 Introduction

First introduced by Čencov (1962); Kromal and Tarter (1968); Schwartz (1967); Watson

(1969), density estimation using orthogonal series has since been extensively studied. Sup-

pose we observe an i.i.d sample {Xi}ni=1 from the distribution of a random variable X on

[0, 1] with probability density fX . Let {φj}∞j=1 be an orthonormal basis of L2([0, 1], µ). If

fX ∈ L2([0, 1], µ), then it enjoys an expansion fX(·) =
∑∞

j=1 θjφj(·), where θj = E [φj(X)]

is the j-th Fourier coefficients for all j ≥ 1. A natural estimator then takes the form

f̂J(·) :=
J∑
j=1

θ̂jφj(·), θ̂j =
1

n

n∑
i=1

φj(Xi). (1)
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When evaluating the performance of such estimator using MISE criteria, the cutoff value

J plays the role of a tuning parameter, which, when chosen properly, balances the variance

and bias and hence minimizes MISE. The optimal choices of the cutoff J have been discussed

extensively in the literature, see, for example, Hall (1987); Hart (1985); Kromal and Tarter

(1976); Watson (1969). A generalized version of such estimator is based on thresholding

f̂(·) :=
∞∑
j=1

ωj θ̂jφj(·), (2)

where ωj ’s are the so-called thresholding parameters and typically ωj ∈ [0, 1] plays a role of

shrinking the estimated coefficients θ̂j ’s. Note that the previous estimator f̂J(x) is a special

case of the thresholding estimator (2) when we use ωj = 1{j ≤ J}. The thresholding

estimator of the form (2) was first considered by Kromal and Tarter (1968), and many

thresholding procedures have since been extensively studied, see for example, Buena et al.

(2010); Chicken et al. (2005); Diggle and Hall (1986); Donoho et al. (1996); Efromovich

(1986); Wahba (1981) and the references therein.

Various previous works have shown that, when the thresholding parameters ωj ’s are

chosen properly, the orthogonal series estimators of the form (2) can achieve minimax

rates of convergence over familiar function classes such as Sobolev ellipsoids and Besov

spaces (commonly discussed in the context of wavelets thresholding), see for example, Buena

et al. (2010); Chicken et al. (2005); Donoho et al. (1996, 1998); Efromovich (1986); Hall

(1986); Härdle et al. (2012) and the references therein. We note that many function classes

considered, such as the Sobolev ellipsoids, are characterized by the restrictions on the Fourier

coefficients of the functions in those classes. Those restrictions on the Fourier coefficients

in turn help researchers establish the statistical properties of estimators of the form (2).

The type of restriction of Fourier coefficients that we are interested in concerns how fast

Fourier coefficients decay. It is motivated, for instance, by the discussion in Efromovich

(2008); Hall (1986) that for a twice differentiable density f on [0, 1] with bounded second

derivative, its Fourier expansion f(·) =
∑∞

j=1 θjφj(·) given the cosine orthonormal basis

{φj}∞j=1 has the property that the Fourier coefficients {θj} decay at rate j−2. Similar

results concerning Hermite orthonormal basis were discussed in Schwartz (1967). In this

paper, we generalize such restrictions. In particular, we allow for that: (i) the non-increasing

reordering (in absolute value) of the Fourier coefficients satisfies that the j-th largest Fourier

coefficient decays at rate |θ(j)| ≤ Aj−k for some constants A, k; (ii) the tail sum of the

Fourier coefficients satisfies
∑∞

j=J+1 θ
2
j ≤ CJ−2k+1 for some constant C. We call such class

the “approximate sparsity class”, motivated by the “approximate sparsity condition” from

Belloni et al. (2018). This class is interesting for the following reasons. First, it generalizes
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various previously considered classes of functions that are characterized by their Fourier

coefficients, including but not limited to the Sobolev ellipsoids and Hölder classes (e.g.

Katznelson (2004)). Second, in practice, researchers may be uncertain about the order (in

terms of absolute magnitude) of the true coefficients, and our approximate sparsity class

reflects such uncertainty while still maintaining the decaying properties of the re-ordered

coefficients that are important for estimation purposes.

While the approximate sparsity class may seem complex, we will show that such class

is sandwiched in between two classes with simpler structures, and we will use sandwich ar-

guments to formally establish the L2([0, 1], µ) ε-metric entropy of the approximate sparsity

class and of its density subclass. To establish the upper bound on the entropy, we use an

existing result from the full approximation set (Lorentz (1966)). On the other hand, we

prove a lower bound using a volume-type argument inspired by Smolyak (1960). With these

entropy bounds, we can apply the results from Yang and Barron (1999) to establish the

minimax rate of convergence (in terms of MISE) for both density estimation and nonpara-

metric regression with Gaussian noise. We obtain a minimax rate of order n−(2k−1)/(2k). As

mentioned before, one can verify that the Sobolev ellipsoids are subsets of our approximate

sparsity class, and as expected, this rate on approximate sparsity class is slower than the

well-known minimax rate n−2k/(2k+1) for Sobolev ellipsoids. For a comprehensive review on

the minimax estimation and the connections between metric entropy and minimax rates,

see for example, Tsybakov (2008); Yang and Barron (1997, 1999) and the references therein.

With the obtained minimax rate in mind, we propose an adaptive density estimator

based on a data-driven hard thresholding procedure. The main idea is as follows. We first

pick a large cutoff J , potentially much larger than sample size n, and estimate the first J

Fourier coefficients by the sample mean θ̂j = n−1
∑n

i=1 φj(Xi). However, including all the J

terms in the series will inevitably lead to large variance in estimation and hence suboptimal

rate. To overcome this issue, in the second step we use a hard-thresholding procedure to

select all the θ̂j above a certain data-driven threshold λ and penalize the rest to zero. Then

we form our estimator

f̃J(·) =
∑

j≤J,|θ̂j |≥λ

θ̂jφj(·). (3)

In the final step, we project f̃J onto the space of densities to obtain a bona-fide density.

Note that since {φj}∞j=1 is an orthonormal basis, the estimation errors will be charac-

terized entirely by Fourier coefficients θj = E [φj(Xi)] and estimated θ̂j = n−1
∑n

i=1 φj(Xi).

This suggests that essentially we are dealing with the problem of estimating and select-

ing many approximate means. Following the ideas from Belloni et al. (2018), we pick the

threshold λ to be greater than the (1 − α)-quantile of max1≤j≤J |θ̂j − θj |, with α ↓ 0 as
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n→∞. Previous literature suggests that such λ can be approximated in a data-driven way

using results from self-normalized moderate deviation theories or high-dimensional boot-

strap, see, for example, Belloni et al. (2012, 2018) and the references therein. Although

these constructions of λ can be used to show the non-asymptotic rate, unfortunately, they

are not sufficient for establishing the rate in terms of MISE. Instead, we modify their con-

structions and propose an alternative data-driven λ, and we show that such λ has the

desired property with the help of the Talagrand’s inequality (see e.g. Bousquet (2003)). We

then show that if the true density f belongs to an approximate sparsity class, our proposed

hard-thresholding estimator is nearly minimax up to a log factor. Moreover, the estimator

itself does not depend on the assumptions on the parameters of the sparsity class and is

therefore adaptive.

The remaining of the paper is organized as follows. In the next section, we introduce

notations and formally define the approximate sparsity class. In Section 3 we establish the

metric entropy and minimax rates for density estimation and nonparametric regression with

Gaussian noise in such classes. In Section 4 we elaborate on the aforementioned adaptive

density estimator and we derive its rate of convergence. We then provide a specific example

using the cosine basis for twice differentiable densities, in which we verify the assumptions

and establish the rate of convergence by applying the results from the main theorem. We

conduct simulation studies in Section 5 to illustrate the performance of our estimator, and

we conclude in Section 6. The proofs are deferred to the appendix.

2 Approximate Sparsity Class

Suppose Φ := {φj}∞j=1 is an orthonormal basis of L2(X , µ) for X ⊂ R, and without loss of

generality, let X = [0, 1]. Then, for any i 6= j,∫ 1

0
φ2
j (x)dµ(x) = 1,

∫ 1

0
φi(x)φj(x)dµ(x) = 0 (4)

Moreover, for any f ∈ L2([0, 1], µ), there is a representation

f(·) =

∞∑
j=1

θjφj(·) with

∞∑
j=1

θ2
j <∞. (5)

Here µ can be either the Lebesgue measure in the context of density estimation or known

probability measures on [0, 1] in the regression settings.

Restrictions on the Fourier coefficients {θj}∞j=1 lead to several familiar classes such as
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the Sobolev ellipsoids (e.g. Chapter 1.7.1 in Tsybakov (2008)) and full approximation set

(e.g. Lorentz (1966)). Motivated by recent literature on high dimensional models (e.g. for

a comprehensive review, see the handbook chapter by Belloni et al. (2018)), we introduce

a new set of restrictions on the Fourier coefficients, and we call the resulting function class

the approximate sparsity class:

Definition 2.1. For given constants A > 0, k > 1/2 and C > 0, and for a given orthonor-

mal basis Φ = {φj}∞j=1, the approximate sparsity class is defined as

Θk(Φ, A,C) :=

f ∈ L2([0, 1], µ) : f(·) =
∞∑
j=1

θjφj(·);

the non-increasing re-ordering {θ(j)}∞j=1 satisfies |θ(j)| ≤ Aj−k;

∀J ≥ 1, the tail sum satisfies

∞∑
j=J+1

θ2
j ≤ CJ−2k+1

 .

(6)

First, we note that the re-ordering in the definition refers to the re-ordering of the

coefficients by the magnitude of their absolute values. Specifically, after re-ordering, θ(j) will

be the j-th largest element in {θj}∞j=1 by absolute magnitude. We also want to remark that

the re-ordering requirement in the definition is equivalent to that ∀J ≥ 1, the non-increasing

re-ordering of {θ(j)}Jj=1 satisfies |θ(j)| ≤ Aj−k, which is a convenient characterization that

we will use to establish various results in this paper. As we discussed in the introduction, it

can be shown that the rate of decay of individual series coefficient is closely related to the

smoothness of functions. The re-ordering condition relaxes such restriction by imposing less

a priori knowledge on which series coefficients are important (as measured by magnitude).

Moreover, the restrictions on the tail sum is a natural one. In particular, if the Fourier

coefficients decay at Aj−k without the re-ordering, the tail sum
∑∞

j=J+1 θ
2
j can be shown to

be bounded by CJ−2k+1 using integral bound. However, by allowing the re-ordering of the

Fourier coefficients, the tail-sum restriction is a necessary one. In particular, the tail-sum

restriction imposes structures on the re-ordering, which also helps us bound the estimation

bias.

At first sight, the complexity of the approximate sparsity space seems difficult to char-

acterize. We will introduce additional spaces that have simpler structures and “sandwich”

the approximate sparsity space.

Definition 2.2. For given constants A > 0, k > 1/2, and C > 0, and for a given orthonor-
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mal basis Φ = {φj}∞j=1, define the following spaces

Ek(Φ, A) :=

f ∈ L2([0, 1], µ) : f(·) =
∞∑
j=1

θjφj(·); |θj | ≤ Aj−k ∀j ≥ 1

 (7)

Ak(Φ, A,C) :=

f ∈ L2([0, 1], µ) : f(·) =

∞∑
j=1

θjφj(·);

|θ1| ≤ A; ∀J ≥ 1,
∞∑

j=J+1

θ2
j ≤ CJ−2k+1

 .

(8)

The class Ek(Φ, A) consists of all functions in L2([0, 1], µ) whose Fourier coefficients

decay in an ordered manner in polynomial rates. For example, differentiable functions

in L2([0, 1], µ) can be viewed as elements in such class. On the other hand, the set

Ak(Φ, A,C) is an example of the full-approximation set discussed in Lorentz (1966). A

function f ∈ Ak(Φ, A,C) can be approximated by the partial sums
∑J

j=1 θjφj(·), and the

tail sum restriction in the definition of Ak(Φ, A,C) can be understood as the restriction

on the bias from such approximation. We show in the appendix (Lemma C.1) that for

appropriately chosen constant C, Ek(Φ, A) ⊆ Θk(Φ, A,C) ⊆ Ak(Φ, A,C). In particular,

note that if |θj | < Aj−k, then

∞∑
j=J+1

θ2
j ≤ A2

∫ ∞
J

t−2kdt =
A2

2k − 1
J−2k+1 (9)

so we can simply take C = A2/(2k − 1) in the definition of Ak(Φ, A,C). The structures of

Ek(Φ, A) and Ak(Φ, A,C) are much simpler and they will help us bound the metric entropy

of the approximate sparsity class.

Throughout, we will use M2(ε,F) := logN(ε, ‖·‖L2([0,1],µ),F) to denote the Kolmogorov

ε-entropy, where N(ε, ‖ · ‖L2([0,1],µ),F) is the cardinality of the largest ε-packing set of

a set F under the L2([0, 1], µ) distance. Next, we formally introduce the definition of

minimax rates, borrowing notation from Tsybakov (2008). Let {an} and {bn > 0} be real

sequences. We write an & bn if lim infn→∞ an/bn > 0, and similarly, we write an . bn if

lim supn→∞ an/bn < ∞. We use the notation “�” as the asymptotic order symbol. That

is, we write an � bn if

0 < lim inf
n→∞

an
bn
≤ lim sup

n→∞

an
bn

<∞. (10)

Definition 2.3. Given a set F ⊆ L2([0, 1], µ) equipped with norm ‖ · ‖L2([0,1],µ), we say ψn
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is a minimax optimal rate of convergence on (F , ‖ · ‖L2([0,1],µ)) if

inf
f̂n

sup
f∈F

Ef

[
‖f − f̂n‖2L2([0,1],µ)

]
� ψ2

n (11)

where the infimum is taken over all possible estimators.

3 Entropy andMinimax Rate for Approximate Sparsity Class

As we have discussed in the previous section, for appropriately chosen constant C in the

definitions of Θk(Φ, A,C) and Ak(Φ, A,C), we have Ek(Φ, A) ⊆ Θk(Φ, A,C) ⊆ Ak(Φ, A,C).

Therefore, understanding the metric entropy of Ek(Φ, A) andAk(Φ, A,C) can help us control

the metric entropy of the approximate sparsity class Θk(Φ, A,C). In particular, the entropy

on Ek(Φ, A) and Ak(Φ, A,C) will respectively give lower and upper bounds on the entropy

of the sandwiched set Θk(Φ, A,C), as shown in the next lemma.

Lemma 3.1. The ε-entropy of Ek(Φ, A)) under the L2([0, 1], µ) distance satisfies

M2(ε, Ek(Φ, A)) & ε−2/(2k−1). (12)

Moreover, ε-entropy of Ak(Φ, A,C)) satisfies

M2(ε,Ak(Φ, A,C)) � ε−2/(2k−1). (13)

The proof of this lemma is given in the appendix. As we remarked before, Ak(Φ, A,C)

is a special case of the full approximation set introduced in Lorentz (1966), and its entropy

can be established using Theorem 3 in Lorentz (1966). On the other hand, to the best of

our knowledge, the earliest reference of the class Ek(Φ, A) can be traced back to Smolyak

(1960) in which the trigonometric basis Φ is considered 1. Inspired by Smolyak (1960), we

adapt their arguments and extend similar results to Ek(Φ, A) for more general orthonormal

bases 2. Next, we use Lemma 3.1 to establish the following theorem, which can be shown

using a sandwich type of argument.

1The class Ek(Φ, A) is sometimes referred to as the “hyperrectangles” in the literature, and minimax
risks over these hyperrectangles has been studied in the context of Gaussian shift models, see, for example,
Donoho et al. (1990) and the references therein.

2Prior to learning the existence of Smolyak (1960), we pursued an alternative route when establishing
the entropy of Ek(Φ, A). This alternative proof relies on an isometry between Ek(Φ, A) and a generalized
Hilbert cube (Kloeckner (2012)). Kloeckner (2012) establishes the bounds on the entropy of the Hilbert
cubes with which one can infer lower bounds on the entropy of Ek(Φ, A). While these lower bounds are
sufficient for establishing the minimax rates, we opt to adopt the arguments used by Smolyak (1960) for the
sake of clarity.

7



Theorem 3.1. The ε-entropy of Θk(Φ, A,C) under the L2([0, 1], µ) distance satisfies

M2(ε,Θk(Φ, A,C)) � ε−2/(2k−1). (14)

This theorem formally establishes bounds on the L2 metric entropy of our approxi-

mate sparsity class Θk(Φ, A,C))with the help of Ek(Φ, A) and Ak(Φ, A,C). The following

corollary establishes a similar entropy result on the density subset of Θk(Φ, A,C)).

Corollary 3.1. Let Θ̃k(Φ, A,C) ⊆ Θk(Φ, A,C) be defined as the subset of all probability

densities in Θk(Φ, A,C). Moreover, assume that the basis Φ = {φj}∞j=1 includes a constant

term and Θk(Φ, A,C) is uniformly bounded. Then

M2(ε, Θ̃k(Φ, A,C)) � ε−2/(2k−1). (15)

We note that many familiar orthonormal bases on L2([0, 1], µ) contain a constant term.

Moreover, the requirement that the functions in Θk(Φ, A,C) are uniformly bounded, can

be satisfied, for example, when the orthonormal basis Φ is uniformly bounded and k > 1.

Assuming uniform boundedness will allow us to find a set of the densities of the form

(f +M ′+ 1)/(
∫
fdµ+M ′+ 1) for f ∈ Ek(Φ, A) for some large constant M ′, which provides

a lower bound for the entropy of Θ̃k(Φ, A
′, C ′) for some constants A′ and C ′, which in turn

is a lower bound for Θ̃k(Φ, A,C). Then applying the sandwich argument again gives us the

results of the corollary. With the entropy results, we formally establish the minimax rates for

nonparametric regression with Gaussian noise and density estimation on the approximate

sparsity classes.

Theorem 3.2. Let Θ̃k(Φ, A,C) ⊆ Θk(Φ, A,C) be the subset of all probability densities in

Θk(Φ, A,C) and assume Θk(Φ, A,C) is uniformly bounded.

(i) Suppose {Xi, Yi}ni=1 is i.i.d with Xi ∼ PX that admits a density. For nonparametric

regression with Gaussian noise model Y = f(X) + ε with ε ∼ N(0, σ2) and f ∈
Θk(Φ, A,C), the minimax rate of convergence satisfies

inf
f̂n

sup
f∈Θk(Φ,A,C)

E
[
‖f̂n − f‖2L2([0,1],PX)

]
� n−

2k−1
2k . (16)

(ii) Suppose {Xi}ni=1 is i.i.d with Xi ∼ X for X ∈ [0, 1] ⊆ R with density f ∈ Θ̃k(Φ, A,C),

the minimax rate of convergence satisfies

inf
f̂n

sup
f∈Θ̃k(Φ,A,C)

Ef

[
‖f̂n − f‖2L2([0,1],µ)

]
� n−

2k−1
2k . (17)
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Theorem 3.2 can be seen as a direct consequence of Theorem 3.1 and Corollary 3.1 due

to the tight connection between the entropy and minimax rates established in Yang and

Barron (1999) and the references therein. In particular, the minimax rate of estimation on

a particular class of functions F is closely related to the “critical separation” εn, which is

determined via the identity M2(εn,F) = nε2n. Then the results of the theorem should follow

from our entropy results. We note that there are some caveats when applying Yang and

Barron (1999) directly on the density subset Θ̃k(Φ, A,C) since it is not convex nor bounded

away from zero. However, we show in the proof that this subset is sandwiched in between

two convex sets of densities with which we can establish the desired result.

4 Nearly Minimax Optimal Adaptive Density Estimator

4.1 Preliminaries

In this section, we propose a density estimator that is adaptive and achieves the minimax

rate of convergence on Θ̃k(Φ, A,C) up to a log term. Suppose X is a random variable

with probability density f ∈ L2([0, 1], µ) and let Φ = {φj}∞j=1 be an orthonormal basis of

L2([0, 1], µ) with µ being the Lebesgue measure. Then f has a unique representation:

f(·) =
∞∑
j=1

θjφj(·).

Moreover, f being a probability density and Φ = {φj}∞j=1 being an orthonormal basis allow

us to find expressions of θj ’s in terms of expectations:

θj =

∫
[0,1]

φj(x)(
∞∑
j=1

θjφj(x))dµ(x) =

∫
[0,1]

φj(x)f(x)dµ(x) = E [φj(X)] . (18)

Given an i.i.d sample {Xi}ni=1 with Xi ∼ X, the standard series estimator for the density

f builds on identity (18) and takes the form

f̂J(x) =

J∑
j=1

θ̂jφj(x) where θ̂j =
1

n

n∑
i=1

φj(Xi)

Note that the mean integrated squared error (MISE) of f̂n equals

E
[
‖f − f̂J‖L2([0,1],µ)

]
=

J∑
j=1

V ar(φj(X))

n
+

∞∑
j=J+1

θ2
j . (19)
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The choice of the cutoff J plays an essential role in the trade-off between variance and bias

in (19), and yet in order to properly choose J in estimation, one often has to assume some

prior knowledge about the smoothness of the unknown f .

We propose an alternative estimator that circumvents this issue. In particular, our

estimator requires choosing a large cutoff J , and then uses LASSO to select the most

“relevant” Fourier coefficients among {θ̂1, θ̂2, · · · , θ̂J}. Note that many of the familiar bases,

such as cosine and Legendre polynomial basis, contain a constant element. Therefore, we

always assume the orthonormal basis of choice contains a constant term, which, without loss

of generality, we assume to be the first basis term φ1. Then note that θ̂1 = n−1
∑n

i=1 φ1 =

φ1 = E [φ1] = θ1, that is, there’s no estimation error for the first term. Therefore, we should

always include θ̂1 in our estimator in practice.

For a slight change of notation, let θJ = {θ1, θ2, · · · , θJ} ∈ RJ denote the first J true

but unknown series coefficients. Let θ̂J ∈ RJ be an estimator of θJ defined as follows

θ̂j =
1

n

n∑
i=1

φj(Xi); θ̂J := (θ̂1, · · · , θ̂J) (20)

where each θ̂j is consistent by weak law of large numbers under mild regularity conditions,

and θ̂J can be shown to be consistent using Bernstein’s inequality and maximal inequality

under additional assumptions (e.g. if the orthonormal basis Φ is bounded or if the density

is bounded). Given θ̂J , the estimator we consider here is the so-called hard-thresholding

estimator:

θ̃j = ωj θ̂j where ωj = 1{|θ̂j | ≥ λ} for 1 ≤ j ≤ J (21)

where ωj ’s are the thresholding parameters depending on the penalty parameter λ. To be

consistent with the notation in (2), we let ωj = 0 for j > J . The hard thresholding estima-

tor we consider here differs from the soft-thresholding estimator that has been considered

in some previous literature, for example, Buena et al. (2010) and the references therein.

Intuitively, for a properly chosen penalty parameter λ, we penalize “small” estimates of the

series coefficients to 0 while keeping the rest unchanged. Let T ⊆ {1, · · · , J} denote the set

of selected indices, that is,

T := {j ∈ {1, · · · , J} : |θ̂j | ≥ λ}. (22)

As a result, the new estimator we get is

f̃J(x) :=
J∑
j=1

θ̃jφj(x) =
∞∑
j=1

ωj θ̂jφj(x) =
∑
j∈T

θ̂jφj(x). (23)
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As we will show later, the quality of this estimator depends on the penalty parameter and,

to a lesser degree, the cutoff J .

Moreover, note that f̃J is not necessarily a probability density. We need to make sure f̃J

integrates to 1 and is nonnegative. The former is easily satisfied if µ is the Lebesgue measure

on [0, 1] and the first basis element φ1 = 1, which, by the definition of orthonormality, implies∫
[0,1]

f̃J(x)dµ(x) =

∫
[0,1]

φ2
1dµ(x) +

∑
j∈T\{1}

θ̂jφj(x)dµ(x)

=

∫
[0,1]

φ2
1dµ(x) +

1

φ1

∫
[0,1]

φ1

∑
j∈T\{1}

θ̂jφj(x)dµ(x) = 1. (24)

This is another reason why we should always include θ̂1 = φ1 in our estimator.

On the other hand, some forms of post-processing are needed to ensure that the esti-

mator is nonnegative. We will follow the P-Algorithm suggested by Gajek (1986), which is

attractive in both its ease of implementation and the statistical properties of the resulting

estimator. Here we review the P-Algorithm and illustrate with our estimator:

Definition 4.1. The P-Algorithm is defined as follows:

1. Set f0 = f̃J , and k = 0.

2. Set fk+1 = max{0, fk}, and let Ck+1 =
∫

[0,1] fk+1(x)dµ(x). Stop if Ck+1 = 1.

3. Set fk+2 = fk+1 − (Ck+1 − 1).

4. Set k = k + 2 and go to step 2.

Denote the resulting estimator from the algorithm as f̂∗.

Gajek (1986) shows that the P-Algorithm converges both point-wise and in ‖ ·‖L2([0,1],µ)

to a density f̂∗ = max{0, f̃J + c}, for some constant c. Moreover, f̂∗ is the orthogonal

projection of f̃J onto the space of densities, and f̂∗ has at least the same rate of convergence

(as measured in MISE) as f̃J .

4.2 Main results

To estimate f̂∗ and to establish its statistical properties, we need to consider a data-driven

way of choosing the regularization parameter λ in (21). In particular, in order to control

11



the penalization error in a uniform manner, we want to pick regularization parameter λ in

a way such that

λ ≥ (1− α)− quantile of ‖θ̂J − θJ‖∞. (25)

There are several ways of achieving this. For example, one can approximate such λ using the

results from the self-normalized moderate deviation theory or high dimensional bootstrap

literature, see for example Belloni et al. (2018) and the references therein. However, in

order to establish the MISE, we need (25) to hold with α = αn going zero sufficiently fast

as sample size n increases. To this end, we will modify the λ proposed by Belloni et al.

(2018) based on the moderation deviation theories, and instead we will use the Talagrand’s

inequality (see Bousquet (2003)) to establish the asymptotic result.

To facilitate the discussion, we borrow the following notations from Belloni et al. (2018):

Let {Xi}ni=1 be an i.i.d random sample in R and let {φj}∞j=1 be an orthonormal basis of

L2([0, 1], µ). With some abuse of notation, let Φ denote the CDF of the standard normal

variable, and define

Zij := φj(Xi)− E [φj(Xi)] (26)

and we let Ẑij be the sample analog of Zij

Ẑij = φj(Xi)−
1

n

n∑
k=1

φj(Xk). (27)

We introduce the following regularity conditions.

Condition A. Let Zij be defined as in (26) and suppose that the orthonormal basis {φj}∞j=1

satisfies max1≤j≤J ‖φj(·)‖∞ ≤MJ for some MJ .

(i) n−1
∑n

i=1E
[
Z2
ij

]
≥ 1 for all 1 ≤ j ≤ J ;

(ii) J = np for some known p > 0;

(iii) M2
J ≤ n/ log(n);

(iv) (JMJ/n)α
1/2
n ≤ n−(2k−1)/(2k) for some positive sequence (αn) ↓ 0.

Condition A will be assumed to establish the main results in this section. We want to

emphasize that all but (i) in Condition A can be verified, and we note that (i) is stated in

the form that is convenient for the proof and the lower bound 1 in the statement can be

replaced by any positive constant. In particular, (ii) is chosen by researchers, and (iii) can

be checked for a given orthonormal basis. Note that when the chosen orthonormal basis is

12



uniformly bounded, such as the cosine basis, we have M2
J = M for some constant M , in

which case (iii) is trivially satisfied, and we can potentially choose J � n. On the other

hand, if we have a growing basis, the choices of J can be limited depending on how fast

the basis grows. For example, the Legendre basis grows with M2
J = 2J + 1, and we have to

choose J such that J = np for some p < 1 (p can be close to 1 for n large). The requirement

(iv) can be viewed as the extra cost we pay when bounding the variance term in the MISE.

In the next theorem, we propose a λ such that λ ≥ (1 − αn)-quantile of ‖θ̂J − θJ‖∞ with

αn goes to zero sufficiently fast so that the MISE can be established.

Theorem 4.1. Let λ be defined as follows,

λ :=

√
log(J)

n
Φ−1

(
1− 1

2
√

2π

1√
2 log(J)

1

J

)
max

1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

. (28)

Assume (i)-(iii) in Condition A are satisfied. Then there exists n∗ ∈ N such that for all

n ≥ n∗,
λ ≥ (1− αn)− quantile of ‖θ̂J − θJ‖∞

with αn = (Jn)−2 + 2n−3.

The proof of the theorem is given in the appendix and it can be easily adapted to

allow other choices of αn so that (iv) in Condition A can be satisfied. The expression of

λ in the theorem bears some similarities to the ones given in Belloni et al. (2012) and in

Belloni et al. (2018) (Theorem 2.4) using moderate deviation theories. Compared to their

constructions, for J = np, our λ has an extra
√

log(n) multiplied (ignoring the constants).

Roughly speaking, by the Talagrand’s inequality, this extra log term pushes our λ into the

exponential tail and allows us to obtain αn that is sufficiently fast for establishing MISE.

We remark that the λ based on the moderate deviation theories can still be used to establish

the non-asymptotic rate.

With this result, we can establish the second main result of this section. In particular,

we are going to assume that the density of the random variable in question belongs to the

approximate sparsity space Θ̃k(Φ, A,C), and we will show that the post-processed estimator

f̂∗ defined in 4.1 admits the minimax rate of convergence on Θ̃k(Φ, A,C) up to a log term.

Theorem 4.2. Let {Xi}ni=1 ∼ X be an i.i.d random sample with support [0, 1] ⊂ R. Assume

that the true density f of X is in Θ̃k(Φ, A,C) uniformly bounded by some constant C̃ and

that Condition A is satisfied. Let the regularization parameter λ be chosen as in (28) and

13



let f̂∗ be the estimator defined in 4.1. Then

sup
f∈Θ̃k(Φ,A,C)

Ef [‖f − f̂∗‖2L2
] = O

( log2(n)

n

) 2k−1
2k

 .

The proof of the theorem is given in the appendix. To bound the MISE, we first

decompose the MISE into roughly the standard “variance” and “bias” components, and

then we bound each separately with the help of Theorem 4.1. In the assumptions of the

theorem, f ∈ Θ̃k(Φ, A,C) imposes restrictions on the Fourier coefficients of f , which will

play a crucial role in establishing the rates. Moreover, we assume that Θ̃k(Φ, A,C) is

uniformly bounded, which is also assumed when we establish the minimax rates. Note that

for the cases when k > 1 and the orthonormal basis Φ is uniformly bounded, one can verify

that Θ̃k(Φ, A,C) is uniformly bounded. In addition, Condition A is assumed so that we

can utilize the results in Theorem 4.1, and as we commented before, the requirements in

Condition A are easy to verify.

We also want to emphasize the adaptive nature of our estimator. In particular, once

the researchers have decided on which orthonormal basis to use, the construction of the

estimator f̂∗ with data-driven λ does not depend on the assumptions on the approximate

sparsity class (e.g. how fast the Fourier coefficients decay). Theorem 4.2 simply states

that our estimator achieves the minimax rate on any approximate sparsity class. This is

attractive in practice since the researchers do not have to assume the smoothness of the

true data-generating density other than that it belongs to some approximate sparsity class.

4.3 Example Using Cosine Basis

In this section, we are going to illustrate our previous results with the differentiable densities

and the cosine basis. The standard cosine orthonormal basis {φj}∞j=1 on L2([0, 1], µ) is

defined as follows:

φ1(x) = 1; φj(x) =
√

2 cos(π(j − 1)x), j = 2, 3, · · · (29)

which is uniformly bounded. Suppose f ∈ L2([0, 1], µ) is twice differentiable. Then for

{φj}∞j=1 being the cosine basis defined above, f(·) =
∑∞

j=1 θjφj(·) and there exists some

constant c such that

|θj | ≤ cj−2

∫ 1

0
|f (2)(x)| dx, j ≥ 1

14



As noted in Efromovich (2008) (Section 2.2), unless additional (boundary) assumptions are

made on the function f , the series coefficients can not decay faster than the rate j−2 (regard-

less of the smoothness of functions). This makes the set of twice differentiable functions

with bounded second derivative a special example of the approximate sparsity class. In

fact, this is an example of Ek(Φ, A), which are themselves a special case of the approximate

sparsity class without reordering. The next result follows directly from Theorem 4.2.

Corollary 4.1. Suppose {Xi}ni=1 ∼ X is an i.i.d sample of random variables with Xi ∈
[0, 1]. Suppose the true density f of X is such that f ∈ L2([0, 1], µ) and f is twice differen-

tiable with bounded second derivative. Let {φj}∞j=1 be the cosine orthonormal basis defined

as in (29). Assume requirement (i) in Condition A is satisfied and let J = np for some

p > 0. Let the regularization parameter λ be chosen as in (28) and let f̂∗ be the estimator

defined in 4.1. Then

E
[
‖f − f̂∗‖2L2

]
= O

((
log2(n)

n

) 3
4

)
.

Note that since the cosine basis is uniformly bounded, we can drop the assumption that

the density is bounded and the requirements in Condition A can be verified. Moreover, in

view of our results in Section 3, the rate in this corollary is minimax up to a log term. As

the approximate sparsity class and Ek(Φ, A) class are new (and we commented previously

that the familiar Sobolev ellipsoids are subsets of these classes), we have not yet considered

the performances of other density estimators on such classes, and whether there are other

adaptive rate-optimal estimators on these new classes remains an open question.

5 Simulations

In this section, we conduct simulation studies in which we compare the simulated MISE

of our estimator introduced in Section 4 with an alternative estimator for which the series

cutoff has to be properly specified. The true data generating density is constructed to be

in the approximate sparsity class.

5.1 Design density in approximate sparsity class

For the first simulation, we construct a density whose (cosine) Fourier coefficients satisfy

approximate sparsity. Let

fX(·) =
∞∑
j=1

θjφj(·) (30)
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where φj ’s are the cosine basis terms defined in (29). We specify the θj ’s in the following

way:

• θ1 = 1, θj = Aj−2 for j = 2, 3, 7, 8;

• θ5 = A10−2, θ11 = A4−2, θ13 = A6−2, θ14 = A5−2, θ15 = A9−2;

• θj = 0 for j = 4, 6, 9, 10, 12 and for all j ≥ 16.

As we’ve shown in section 4, since θ1 = 1, fX integrates to 1. The constant A = 2 is chosen

such that fX in (30) is non-negative and hence a proper probability density.

5.2 Simulation procedures

To simulate MISE, we proceed in following steps:

Step 1 : We draw B = 1000 independent i.i.d. samples {Xi}Ni=1 of size N . Here the N

we consider will be N = 5000, 10000, 15000, 20000.

Step 2(a): For each sample {Xi}Ni=1 from the true density fX , we construct an estimator

f̂∗ described in section 4:

• We use cosine orthonormal basis defined in (29);

• The pre-processed estimator f̃J is constructed as in (23), with J = 200;

• The penalty parameter λ is chosen as in (28);

• We pass f̃J to the p-algorithm defined in (4.1):

– The integral Ck+1 :=
∫ 1

0 fk+1(x)dx at each iteration is approximated using nu-

merical integration, and we denote the approximated integral as Ĉk+1;

– The p-algorithm stops when |Ĉk+1 − 1| < e∗ for user specified e∗. This returns

the positive estimator f̂∗ = fk+1.

Step 2(b): For each sample {Xi}Ni=1 from the true density fX , we construct an alternative

comparison estimator f̌ in the following way:

• We use cosine orthonormal basis defined in (29);
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• We pick series cutoff J to be N1/4 and construct the natural estimator

f̂J(·) =
J∑
j=1

θ̂jφj(·), where θ̂j =
1

N

n∑
j=1

φj(Xi) (31)

• We pass f̂J to the p-algorithm defined in (4.1) in the same way as in Step 2(a), which

returns a positive estimator f̌ .

Step 3 : For each 1 ≤ b ≤ B sample defined in Step 1 and associated estimator from

Step 2(a), we estimate the integrated squared error (ISE) using numerical integration, and

we use ÎSEb to denote the approximated ISE. We then calculate the estimated MISE

M̂ISE :=
1

B

B∑
b=1

ÎSEb (32)

Repeat the same process for the estimator from Step 2(b).

Remark 5.1. Unlike our estimator in Step 2(a), for the comparison estimator in Step

2(b) we need to properly specify the series cutoff J . In the simulation, for this comparison

estimator, we choose J = N1/4 for the following reason. When the true density is unknown,

if the researcher is willing to make assumptions on the smoothness of the density, they can

then determine the series cutoff based on such assumptions. For example, if the researcher

assumes the true density is twice differentiable with bounded second derivative, as we dis-

cussed in Section 5, the Fourier coefficients θj decay at the rate j−2, and one can show that

a series cutoff J = N1/4 minimizes the MISE under such assumption.

5.3 Simulation Results

The simulation design described above is coded directly using Python, with code available

upon request. Since the design density is not a known density coded in Python packages,

we use inverse transform sampling to generate random samples from our design density. We

illustrate the performance of the inverse transform sampling in Figure (1), where the solid

line is the design density, and the normalized histogram below the solid line is constructed

using a random sample of size 10000 from such inverse transform sampling.

We present the simulation results in Figure (2). Each dot represents the simulated

MISE for a given sample size, where the red dots (labeled as “f star”) are the simulated

MISEs for our estimator and the blue dots (labeled as “f check”) are for the comparison
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Figure 1: Design Density with Random Sample

estimator. We make the following observations. First, as expected, for both our estimator

and the comparison estimator, the simulated MISE decreases as sample size increases. For

the comparison estimator, this reflects the fact that such estimator is using larger series

cutoffs as sample size increases, which will eventually include all the nonzero terms of the

series coefficients. On the other hand, our estimator requires choosing a large series cutoff

(J = 200) to start with and then uses a data-driven hard-thresholding procedure to select

the relevant terms. Second, for each of the sample sizes in our consideration, the simulated

MISE of our estimator is smaller than that of the comparison estimator. This is likely due

to the special feature of our design density, where the large Fourier coefficients show up in

later series terms. Our estimator estimates first J = 200 series terms and the data-driven

hard-thresholding procedure is able to pick up the large series terms to reduce the bias. On

the other hand, the comparison estimator has to specify the series cutoff N1/4 and may fail

to include the large Fourier coefficients that show up in later terms.

These simulation results demonstrate that our estimator performs well (as measured by

the simulated MISE) for estimating densities in the approximate sparsity class. Moreover,

the results showcase the adaptive nature of our estimator in comparison to an alternative

estimator for which the researcher has to make potentially restrictive smoothness assump-
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tions in order to determine the proper series cutoff. Even then, if the sample size is not

large enough, such comparison estimator may still miss large Fourier coefficients that show

up in later series terms, which can result in larger estimation errors.

N = 5000 N = 10000 N = 15000 N = 20000
Sample Size

0.000
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0.010
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0.030

(0.0177)
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(0.0071)
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(0.0271) (0.0266)

(0.0108) (0.0106)

Simulated MISE
f_star
f_check

Figure 2: Simulated MISE With Various Sample Sizes

6 Concluding Remarks

In this paper, we have studied a new class of functions, which we call the approximate

sparsity class, that is characterized by a new set of restrictions on the Fourier coefficients

of those functions for a given orthonormal basis. We have derived the upper and lower

bounds on L2 ε-metric entropy of the approximate sparsity class and we have established the

minimax rates for nonparametric regression with Gaussian noise and for density estimation.

We have shown that functions in such classes are natural candidates for the thresholding

types of estimators and we proposed an adaptive density estimator that is nearly minimax

optimal (up to a log term) over such class. For future research, we hope to study estimators

for nonparametric regression for functions in the approximate sparsity class and we hope

to generalize the approximate sparsity class to high-dimensional regression settings.
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A Proofs for Section 3

A.1 Proof of Lemma 3.1

First, we establish the metric entropy of Ak(Φ, A,C), which relies on Theorem 3 in Lorentz

(1966). In particular, note that in the definition of Ak(Φ, A,C), we have
∑∞

j=J+1 θ
2
j ≤

CJ−2k+1. So following Lorentz (1966) notation, let δ2
J = CJ−2k+1. Moreover, simple

calculation shows that δ2J ≤ cδJ for some constant 0 < c < 1. Therefore, condition (13) in

Lorentz (1966) holds.

Let ε > 0 be given. Then by Theorem 3 of Lorentz (1966), the ε-metric entropy of

Ak(Φ, A,C) is of order

min{J : δ2
J = CJ−2k+1 ≤ ε2}

solving which, we get M2(ε,Ak(Φ, A,C)) � ε−2/(2k−1).

Second, we establish the metric entropy of Ek(Φ, A). Recall that the set Ek(Φ, A) is

defined as

Ek(Φ, A) :=

f ∈ L2([0, 1], µ) : f(·) =
∞∑
j=1

θjφj(·); |θj | ≤ Aj−k ∀j ≥ 1

 .

which is isometric to the set

Ek,A :=
{

(θj)
∞
j=1 : |θj | < Aj−k

}
i.e. for any two elements f, g ∈ Ek(Φ, A), we can find two unique elements f∗, g∗ in Ek,A

such that ‖f−g‖L2([0,1],µ) = ‖f∗−g∗‖`2 . This follows from the fact that Φ is an orthonormal

basis. Define the following set

EQk,A :=
{

(θj)
∞
j=1 : |θj | < Aj−k ∀ 1 ≤ j ≤ Q; θj = 0 ∀j ≥ Q+ 1

}
.

which is a subset of Ek,A. It can be shown that EQk,A is isometric to the following set

HQ
k,A :=

{
(θj)

Q
j=1 : |θj | < Aj−k ∀ 1 ≤ j ≤ Q

}
⊆ RQ.

By the definition of isometry, the metric entropy of Ek(Φ, A) is lower-bounded by the metric

entropy of HQ
k,A. We show that for a properly chosen Q, we can establish the desired lower

bound.

Let V denote the volume of HQ
k,A and let v denote the volume of ε-ball in RQ. Then the
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ratio V/v provides a lower bound on the covering number of HQ
k,A. By Sterling’s formula,

we have

v � 1

Qπ

(
2πe

Q

)Q
2

εQ

Then we have

V

v
�

 Q∏
j=1

2Aj−k

 /

(
1

Qπ

(
2πe

Q

)Q
2

εQ

)

Taking log, we have

log

(
V

v

)
&

Q∑
j=1

log(2Aj−k)− log

(
1

Qπ

(
2πe

Q

)Q
2

εQ

)

& −k
Q∑
j=1

log(j) +Q log(2A)− log(Q−(Q+1)/2εQ)

& −k(Q log(Q)−Q+ Θ(log(Q))) +Q log(2A)− log(Q−(Q+1)/2εQ)

& (−k +
1

2
)Q log(Q)−Q log(ε) + (log(2A) + k)Q

where the third line holds by Sterling’s approximation. Then take Q to be such that

Q−k+1/2 = ε−1, in which case Q = ε−2/(2k−1), and we have

log

(
V

v

)
& ε−2/(2k−1).

This gives a lower bound on the capacity (log of covering number) of HQ
k,A. Using the

convenient fact that the packing number is bounded below by covering number (see for

example, Lorentz (1966)), we conclude that

M2(ε, Ek(Φ, A)) ≥M2(ε,HQ
k,A) & ε−2/(2k−1).

A.2 Proof of Theorem 3.1

By Lemma C.1, for properly chosen constant C in the definition of Ak(Φ, A,C), we have

Ek(Φ, A) ⊆ Θk(Φ, A,C) ⊆ Ak(Φ, A,C), and the results follow from Lemma 3.1.

21



A.3 Proof of Corollary 3.1

We will use the sandwich argument again to establish this result. Note we are given that

Θk(Φ, A,C) are uniformly bounded by some constant M ′, which also holds for its subset

Ek(Φ, A). We will manipulate Ek(Φ, A) to establishes the lower bound, while the upper

bound is still given by the full approximation set Ak(Φ, A,C).

First, consider the following transformation

Ẽk(Φ, A) :=

{
f̃ =

f +M ′ + 1∫
fdµ+M ′ + 1

: f ∈ Ek(Φ, A)

}

=

f̃(·) =
θ1 +M ′ + 1 +

∑∞
j=2 θjφj(·)

θ1 +M ′ + 1
: f(·) =

∞∑
j=1

θjφj(·) ∈ Ek(Φ, A)


=

f̃(·) = 1 +
∞∑
j=2

θj
θ1 +M ′ + 1

φj(·) : |θj | < Aj−k

 .

This is a set of densities in Ek(Φ, A′), which is a subset Θ̃k(Φ, A
′, C ′) for some constant A′.

Note that for M ′ large, A′ ≤ A and C ′ ≤ C, which implies that Θ̃k(Φ, A
′, C ′) ⊆ Θ̃k(Φ, A,C).

Therefore, it suffices to establish a lower bound for Θ̃k(Φ, A
′, C ′).

Second, consider a subset of Ẽk(Φ, A), denote by

G1 :=

g(·) = 1 +
∞∑
j=2

θjφj(·) : |θj | < Ãj−k

 .

Note that G1 is a indeed a subset of Ẽk(Φ, A) if, for example, Ã = A/(A+M ′+1). Moreover,

we define

G2 :=

g(·) = 1 +
∞∑
j=1

θjφj(·) : |θj | < A∗j−k


for some constant A∗. Note that we can change the index of θj by considering

|θj | < A∗j−k =⇒ |θj | < A∗
(

j

j + 1

)−k
(j + 1)−k ≤ 2kA∗(j + 1)−k.

This implies that G2 is a subset of

G3 :=

g(·) = 1 +

∞∑
j=2

θjφ̃j(·) : |θj | < 2kA∗j−k


22



where φ̃j = φj−1. Since {φj} is an orthonormal basis, it can be shown that the set G1 and

G3 are isometric, which implies that they have the same order of entropy lower-bounded

by the entropy of G2. Moreover, G2 and Ek(Φ, A′) are also isometric, so they also have the

same order of L2([0, 1], µ) metric entropy.

Combining above results, we have found a subset of Θ̃k(Φ, A
′, C ′), G1, that has the same

order of entropy as Ek(Φ, A′). Since Θ̃k(Φ, A
′, C ′) ⊆ Θ̃k(Φ, A,C), by the results in Theorem

4.1, we conclude that

M2(ε, Θ̃k(Φ, A,C)) & ε−2/(2k−1).

On the other hand, since Θ̃k(Φ, A,C) ⊆ Ak(Φ, A,C), the upper bound follows.

A.4 Proof of Theorem 3.2

First, we show the claim on the nonparametric regression. Given the entropy bounds from

Theorem 3.1, we can apply results from Yang and Barron (1997) (Theorem 9 and 10) and

Yang and Barron (1999) (Theorem 6):

inf
f̂n

sup
f∈Θk(Φ,A,C)

E
[
‖f − f̂n‖22

]
� n−

2k−1
2k .

Second, we establish the minimax rates on the density subset Θ̃k(Φ, A,C). Again, for

notational simplicity, we use ‖ · ‖2 to denote the L2([0, 1], µ) norm, where µ is the Lebesgue

measure on [0, 1]. Note that we can not apply Yang and Barron (1999)’s results directly

on our set Θ̃k(Φ, A,C) since it may not be bounded away from zero and it is not convex

(due to reordering restrictions on the Fourier coefficients). Nevertheless, since Ek(Φ, A) ⊆
Θk(Φ, A,C) ⊆ Ak(Φ, A,C), we have

Ẽk(Φ, A) ⊆ Θ̃k(Φ, A,C) ⊆ Ãk(Φ, A,C)

where (with some abuse of notation) Ẽk(Φ, A), Θ̃k(Φ, A,C), and Ãk(Φ, A,C) are the density

subsets of Ek(Φ, A),Θk(Φ, A,C),Ak(Φ, A,C) respectively. Moreover, it can be verified from

definition that Ẽk(Φ, A) and Ãk(Φ, A,C) are both convex, so Yang and Barron (1999) applies

to these two sets. In particular, the lower bound on the minimax rate of Θ̃k(Φ, A,C) is

given by the a lower bound on Ẽk(Φ, A) (the entropy of Ẽk(Φ, A) is established in the proof

of Corollary 3.1), and an upper bound is given by that of Ãk(Φ, A,C) (see Theorem 7 in

Yang and Barron (1999)). Therefore, we have the following

inf
f̂n

sup
f∈Θ̃k(Φ,A,C)

E
[
‖f − f̂n‖22

]
� n−

2k−1
2k .
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B Proofs for Section 4

B.1 Proof of Theorem 4.1

Recall that λ is defined as follows

λ :=

√
log(J)

n
Φ−1

(
1− 1

2
√

2π

1√
2 log(J)

1

J

)
max

1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

where Ẑij := φj(Xi)− n−1
∑n

k=1 φj(Xk). To establish the result, we need to bound λ from

below. Using the property of normal CDF that 1−Φ(x) > 1/(2π)1/2(x/(x2+1)) exp(−x2/2)

(see Lemma C.2), we have

Φ−1

(
1− 1

2
√

2π

1√
2 log(J)

1

J

)
>
√

2 log(J).

Now we bound max1≤j≤J(n−1
∑n

i=1 Ẑ
2
ij)

1/2 from below. By triangle inequality, we have

max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

= max
1≤j≤J

(
1

n

n∑
i=1

(Ẑij − Zij + Zij)
2

) 1
2

≥ max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

− max
1≤j≤J

(
1

n

n∑
i=1

(Ẑij − Zij)2

) 1
2

and we will bound each term separately.

First, following the step 1 in the proof of Theorem 2.4 in Belloni et al. (2018), we have

P

(
max

1≤j≤J

1

n

n∑
i=1

Z2
ij ≤

1

2

)
≤ P

(
1

n

n∑
i=1

Z2
ij ≤

1

2

)

where the inequality holds since P (n−1
∑n

i=1 Z
2
ij ≤ 1/2, ∀ 1 ≤ j ≤ J) ≤ P (n−1

∑n
i=1 Z

2
ij ≤

1/2) for any 1 ≤ j ≤ J . Then for a generic 1 ≤ j ≤ J and some constant c′ > 0,

P

(
1

n

n∑
i=1

Z2
ij ≤

1

2

)
≤ P

(
1

n

n∑
i=1

Z2
ij ≤

1

2n

n∑
i=1

E
[
Z2
ij

])
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= P

(
n∑
i=1

Z2
ij − E

[
Z2
ij

]
≤ −1

2

n∑
i=1

E
[
Z2
ij

])

≤ exp

−(−1
2

∑n
i=1E

[
Z2
ij

]
)2

2
∑n

i=1E
[
Z4
ij

]


≤ exp

(
− n2

c′nM2
J

)

where the first inequality holds by the assumption that E
[
Z2
ij

]
≥ 1, the second inequality

holds by Bernstein inequality (see exercise 2.9 in Boucheron et al. (2013)), and the last in-

equality holds by that E
[
Z4
ij

]
= E

[
(φj(X)− E [φj(X)])4

]
≤ (2MJ)2E

[
φ2
j (X)

]
≤ 4CM2

J .

By assumption, M2
J ≤ n/ log(n) and J = np, which implies n/(c′M2

J ) ≥ 2 log(Jn). Then

the above result implies that

P

(
1

n

n∑
i=1

Z2
ij ≤

1

2

)
≤ exp(−2 log(Jn)) = (Jn)−2

and in which case we have

P

(
max

1≤j≤J

1

n

n∑
i=1

Z2
ij ≤

1

2

)
≤ (Jn)−2.

Second, we bound the term max1≤j≤J(n−1
∑n

i=1(Ẑij − Zij)2)1/2. To simplify the nota-

tion, define

Z := max
1≤j≤J

(
1

n

n∑
i=1

(Ẑij − Zij)2

) 1
2

= max
1≤j≤J

| 1
n

n∑
i=1

φj(Xi)− E [φj(Xi)] |.

By Bernstein inequality and maximal inequality (see Lemma C.3 in the appendix),

E [Z] ≤
K(MJ log(J) +

√
n log(J))

n
.

By Talagrand’s inequality (see the version given by Bousquet (2003)),

P

(
Z ≥ E [Z] +

√
2νnx+

Ux

3

)
≤ exp(−x)

where U satisfies that n−1‖φj(·)−E [φj(Xi)] ‖∞ ≤ U <∞, and νn := 2UE [Z] +nσ2 where

σ2 := n−2 max1≤j≤J E
[
(φj(Xi)− E [φj(Xi)])

2
]
. Note that we can take U := 2MJ/n and
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σ2 ≤ C/n2. Then we have

P

(
Z ≥

K(MJ log(J) +
√
n log(J))

n

+

√√√√2

(
2MJ

n

K(MJ log(J) +
√
n log(J))

n
+
C

n

)
x+

2MJ

n
x


≤ P

(
Z ≥ E [Z] +

√
2νnx+

Ux

3

)
≤ exp(−x).

By Condition A, M2
J = o(n), which implies that there exists some n1 ∈ N such that for all

n ≥ n1 and for x = 3 log(n) we have

P

(
Z ≥ 1

2
√

2

)
≤ exp(−3 log(n)) = n−3.

Combining above, with probability at least 1− (Jn)−2 − n−3, we have the following

max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

≥ max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

− max
1≤j≤J

(
1

n

n∑
i=1

(Ẑij − Zij)2

) 1
2

= max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

− Z

>
1

2
√

2
.

To see this, note that

P

 max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

>
1

2
√

2


≥P

 max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

− Z >
1

2
√

2


≥P

 max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

>
1√
2

and Z <
1

2
√

2


=1− P

 max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

≤ 1√
2

or Z ≥ 1

2
√

2


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≥1− P

 max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

≤ 1√
2

− P (Z ≥ 1

2
√

2

)
≥1− (Jn)−2 − n−3.

This implies that

λ =

√
log(J)

n
Φ−1

(
1− 1

2
√

2π

1√
2 log(J)

1

J

)
max

1≤j≤J
(
1

n

n∑
i=1

Ẑ2
ij)

1/2

≥ c′′
√

log2(J)

n

with probability at least 1− (Jn)−2 − n−3 for n ≥ n1 and some constants c′′ > 0.

Finally, to bound αn, we once again appeal to Talagrand’s inequality. By assumption,

M2
J = o(n), then there exists n2 ∈ N such that for all n ≥ n2,

c′′

√
log2(J)

n
≥
K(MJ log(J) +

√
n log(J))

n

+

√√√√2

(
2MJ

n

K(MJ log(J) +
√
n log(J))

n
+
C

n

)
x+

2MJ

n
x

≥E [Z] +
√

2νnx+
Ux

3

for J = np and x = 3 log(n). Then for n ≥ n∗ := max{n1, n2},

P (Z ≥ λ) ≤ P

Z ≥ c′′
√

log2(J)

n

+ (Jn)−2 + n−3

≤ P
(
Z ≥ E [Z] +

√
2νn log(n3) +

U log(n3)

3

)
+ (Jn)−2 + n−3

≤ (Jn)−2 + 2n−3.

Recall that Z = max1≤j≤J |n−1
∑n

i=1 φj(Xi) − E [φj(Xi)] | = max1≤j≤J |θ̂j − θj |, so the

above result suggests that we can take αn = (Jn)−2 + 2n−3. Note there are many other

permissible choices of αn, and the proof can be modified accordingly if different αn’s are

needed.
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B.2 Proof of Theorem 4.2

To establish the result for the post processed f̂∗ in 4.1, we first establish the result for f̃J in

(23) and then use the results in Gajek (1986) to conclude. We keep J explicit throughout

the proof and we will substitute J = np at the end of the proof. Moreover, in order to

bound the size of selected set of indices T , for the convenience of the notation, we penalize

using 2λ. Note that this is without loss of generality as we can multiply the original λ in

Theorem 4.1 by 1/2, and the results in Theorem 4.1 still hold (just with different constants

and n∗ in the proof).

The proof proceeds in six steps. In the first step, we decompose the MISE into the

“variance” and “bias” components. We bound the cardinality of the set of selected indices

in the second step. Next, we bound “variance” and “bias” separately by expressions of λ

and αn in the third and fourth steps respectively. In step 5 we establish that the λ and αn

we are using are the “correct” ones and we conclude in step 6.

Step 1: Decompose MISE. Let fJ(·) :=
∑J

j=1 θjφj(·) be the infeasible estimator for f ,

where θj ’s are the true but unknown Fourier coefficients. Then we have

Ef

[
‖f − f̃J‖2L2

]
=Ef

[
‖f − fJ‖2L2

]
+ Ef

[
‖f̃J − fJ‖2L2

]
+ 2Ef

[
‖(f − fJ)(f̃J − fJ)‖L2

]
=Ef

[
‖f − fJ‖2L2

]
+ Ef

[
‖f̃J − fJ‖2L2

]
=

∞∑
j=J+1

θ2
j + E

∑
j∈T

(θ̂j − θj)2 +
∑
j∈T c

θ2
j


=E

∑
j∈T

(θ̂j − θj)2

+ E

∑
j∈T c

θ2
j +

∞∑
j=J+1

θ2
j


where the second and third equalities follow from orthonormality. Note that the last line

corresponds to the variance-bias trade-off; however, the randomness of the set T of the

selected indices no longer allows the interchange of expectation and summation.

Step 2: Cardinality of Selected Indices. Recall the definition of the selected indices T :

T = {j ∈ {1, · · · , J} : θ̂j ≥ 2λ}

where λ ≥ (1−αn)-quantile of ‖θ̂J−θJ‖∞. Then for j ∈ T , with probability at least 1−αn,

2λ ≤ |θ̂j | ≤ |θ̂j − θj |+ |θj | ≤ λ+Aj−k
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where the last inequality holds by the definition of approximate sparsity set. This implies

that for j ∈ T , with probability at least 1− αn,

λ ≤ Aj−k ⇐⇒ j ≤ A
1
kλ−

1
k .

That is, T ⊆ {1 ≤ j ≤ J : j ≤ A1/kλ−1/k} with probability at least 1 − αn. This result

establishes that with probability at least 1−αn, the cardinality of the set of selected indices

T satisfies

|T | ≤ A
1
kλ−

1
k .

Step 3: Bound on Bias. To control the bias term E
[∑

j∈T c θ2
j +

∑∞
j=J+1 θ

2
j

]
, we need

to control the random set T c, the set of non-selected indices. By triangle inequality, we

have

|θj | ≤ |θ̂j |+ |θ̂j − θj |

Note that since λ ≥ (1−αn)-quantile of ‖θ̂J − θJ‖∞, we have |θ̂j − θj | ≤ λ with probability

at least 1− αn. Moreover, by definition, for j ∈ T c, |θ̂j | < 2λ. Combining above, on T c,

|θj | ≤ 3λ

with probability at least 1−αn. This result will help us control the bias on the random set

T c. Let En denote the event that

En := {λ ≥ max
j≤J
|θ̂j − θj |}

and note that the probability of this event En happening is at least 1 − αn, and on this

event, |θj | ≤ 3λ for j ∈ T c. We will show that αn can go to zero sufficiently fast for us to

establish minimax rate. Then we can establish the following: for some constants C1, C2, C3,

E

∑
j∈T c

θ2
j +

∞∑
j=J+1

θ2
j


≤ E

 ∑
j∈T c∩j≤m

θ2
j +

∞∑
j=m+1

θ2
j


= E

 ∑
j∈T c∩j≤m

θ2
j +

∞∑
j=m+1

θ2
j

 · 1{En}
+ E

 ∑
j∈T c∩j≤m

θ2
j +

∞∑
j=m+1

θ2
j

 · 1{Ecn}


≤ E
[
9mλ2 + C1m

−2k+1
]

+ C2 · P (Ecn)
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where the first inequality holds for every m ≤ J ; the second inequality holds by that on the

event En, |θj | ≤ 3λ, by Hölder’s inequality, and by that the true density is bounded. Since

the above expression holds for all m ≤ J , we have the following

E

∑
j∈T c

θ2
j +

∞∑
j=J+1

θ2
j


≤ E

[
min
m

9mλ2 + C1m
−2k+1

]
+ C2 · P (Ecn)

≤ C3E
[
λ

2k−1
k

]
+ αnC2

where the last inequality holds by solving the minimization problem over m and by that the

probability of event Ecn is at most αn. We will specify αn and bound E
[
λ

2k−1
k

]
explicitly.

Step 4: Bound on Variance. In this section, we establish bounds on E
[∑

j∈T (θ̂j − θj)2
]
.

Recall En is the event that En = {λ ≥ maxj∈J |θ̂j − θj |}, and in step 2 we have shown that

|T | ≤ A1/kλ−1/k on this event. Then

E

∑
j∈T

(θ̂j − θj)2


=E

∑
j∈T

(θ̂j − θj)21{En}

+ E

∑
j∈T

(θ̂j − θj)21{Ecn}


≤E

[
|T |max

j∈T
(θ̂j − θj)21{En}

]
+

J∑
j=1

E
[
(θ̂j − θj)21{Ecn}

]

where the inequality holds since (i)
∑

j∈T (θ̂j − θj)
21{En} ≤ |T |maxj∈T (θ̂j − θj)

21{En}
over the sample space; (ii) we can bound the sum over random T ⊆ {1, · · · , J} from above

with the deterministic sum over 1 ≤ j ≤ J , and then interchange the expectation and

summation.

First, we bound E
[
|T |maxj∈T (θ̂j − θj)21{En}

]
with the help of set En:

E

[
|T |max

j∈T
(θ̂j − θj)21{En}

]
≤A

1
kE

[
λ−

1
k max
j∈T

(θ̂j − θj)21{En}
]

≤A
1
kE
[
λ−

1
kλ2
]

=A
1
kE
[
λ

2k−1
k

]
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where the first inequality holds since |T | ≤ A1/kλ−1/k on En and the second inequality

holds since on En, maxj∈J |θ̂j − θj | ≤ λ.

Second, we bound
∑J

j=1E
[
(θ̂j − θj)21{Ecn}

]
. By Cauchy-Schwarz,

J∑
j=1

E
[
(θ̂j − θj)21{Ecn}

]
≤

J∑
j=1

(
E
[
(θ̂j − θj)4

]) 1
2

(P (Ecn))
1
2 .

Moreover, for each j,

E
[
(θ̂j − θj)4

]
= E

( 1

n

n∑
i=1

φj(Xi)− E [φj(Xi)]

)4


= n−4E

( n∑
i=1

φj(Xi)− E [φj(Xi)]

)4


≤ c1n
−4E

( n∑
i=1

(φj(Xi)− E [φj(Xi)])
2

)2


= c1n
−2E

( 1

n

n∑
i=1

(φj(Xi)− E [φj(Xi)])
2

)2


≤ c1n
−2E

[
1

n

n∑
i=1

(φj(Xi)− E [φj(Xi)])
4

]
= c1n

−2E
[
(φj(Xi)− E [φj(Xi)])

4
]

where the first inequality holds by Marcinkiewicz-Zygmund inequality for some constant

c1 > 0, the second inequality holds by convexity of the function x 7→ x2 and Jensen’s

inequality, and the last equality holds by i.i.d assumption. This derivation suggests that we

need to bound the fourth central moment of φj(Xi). If the basis is uniformly bounded, the

result is trivial. On the other hand, if the basis grows, i.e. max1≤j≤J ‖φj(·)‖∞ ≤ MJ , we

can bound E
[
φ4
j (Xi)

]
explicitly. Note that for some constant C > 0,

E
[
φ4
j (Xi)

]
≤M2

JE
[
φ2
j (Xi)

]
= M2

J

∫
φ2
j (x)f(x)dx ≤ CM2

J

where the last inequality hold by orthonormality and by that f is bounded. This gives us

E
[
(θ̂j − θj)4

]
≤ C ′M2

J/n
2
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for some constant C ′ > 0. Therefore, for some constant c2 > 0,

J∑
j=1

E
[
(θ̂j − θj)21{Ecn}

]
≤

J∑
j=1

(
E
[
(θ̂j − θj)4

]) 1
2

(P (Ecn))
1
2 ≤ c2JMJ/nα

1/2
n

where the second inequality holds by that P (Ecn) ≤ αn. We need JMJ/nα
1/2
n to go to zero

sufficiently fast (at least as fast as the minimax rate), which is assumed and can be verified

for a given orthonormal basis. Combining above, we have an upper bound on variance

E

∑
j∈T

(θ̂j − θj)2

 ≤ c1E
[
λ

2k−1
k

]
+ c2JMJ/nα

1/2
n .

Step 5: The “Right” Penalization Parameter. We show the λ proposed in (28) will give

us the “correct” minimax rate. Recall that λ is defined as follows

λ =

√
log(J)

n
Φ−1

(
1− 1

2
√

2π

1√
2 log(J)

1

J

)
max

1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

where Ẑij := φj(Xi)− n−1
∑n

k=1 φj(Xk). Then

E
[
λ

2k−1
k

]
= E

(√ log(n)

n
Φ−1

(
1− 1

2
√

2π

1√
2 log(J)

1

J

)
max

1≤j≤J
(
1

n

n∑
i=1

Ẑ2
ij)

1
2

) 2k−1
k


≤

(
log(n) log(2

√
2π
√

2 log(J)J)

n

) 2k−1
2k

E


 max

1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2


2k−1

k


≤

(
log(n) log(2

√
2π
√

2 log(J)J)

n

) 2k−1
2k
(
E

[
max

1≤j≤J

1

n

n∑
i=1

Ẑ2
ij

]) 2k−1
2k

≤ C ′
(

log(n) log(J)

n

) 2k−1
2k

(
E

[
max

1≤j≤J

∣∣∣∣∣ 1n
n∑
i=1

φ2
j (Xi)− E

[
φ2
j (Xi)

]∣∣∣∣∣
]

+ C ′′

) 2k−1
k

≤ C ′
(

log(n) log(J)

n

) 2k−1
2k

M2
J log(J) +

√
nM2

J log(J)

n
+ C ′′


2k−1

k

≤ C
(

log(n) log(J)

n

) 2k−1
2k
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where the first inequality holds by the property that Φ−1(1−x) ≤
√

2 log(1/x) (see Lemma

C.2), the second inequality holds by Jensen’s inequality, and the third inequality holds by

the definition of Ẑij and by the fact that the density is bounded so that by orthonormality

E
[
φ2
j (Xi)

]
≤ C ′′ for some constant C ′′ > 0, the fourth inequality holds by maximal in-

equality (see Lemma C.3 in the appendix), and the last inequality holds by the assumption

that M2
J ≤ n/ log(n) and J = np for some constant C > 0.

Step 6: Conclusion. By Theorem 4.1, under Condition A, there exists n∗ ∈ N such that

for all n ≥ n∗,
λ ≥ (1− αn)− quantile of max

1≤j≤J
|θ̂j − θj |

with αn = (Jn)−2 +2n−3. Then combining results from step 1 to step 5, by the assumptions

on J and MJ , we have for all n ≥ n∗ = max{n1, n2},

Ef

[
‖f − f̃J‖2L2

]
≤ E

∑
j∈T

(θ̂j − θj)2

+ E

∑
j∈T c

θ2
j +

∞∑
j=J+1

θ2
j


≤ c1E

[
λ

2k−1
k

]
+ c2

JMJ

n
α

1
2
n + C3E

[
λ

2k−1
k

]
+ αnC2

≤ C̃
(

log(n) log(J)

n

) 2k−1
2k

+ c2
JMJ

n

(
(Jn)−2 + 2n−3

) 1
2 + C2

(
(Jn)−2 + 2n−3

)
= O

(
log2(n)

n

) 2k−1
2k

where the last inequality holds by that αn = (Jn)−2 + 2n−3 < n−(2k−1)/(2k) and by the

assumption that (JMJ/n)α
1/2
n ≤ n−(2k−1)/(2k). By Gajek (1986), the post-processed f̂∗

has smaller MISE, and note that our proof does not depend on a specific f ∈ Θ̃k(Φ, A,C),

which proves the desired result

sup
f∈Θ̃k(Φ,A,C)

Ef

[
‖f − f̂∗‖2L2

]
≤ sup

f∈Θ̃k(Φ,A,C)

Ef

[
‖f − f̃J‖2L2

]
= O

( log2(n)

n

) 2k−1
2k

 .
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C Additional Technical Results

Lemma C.1. Let A > 0 and k > 1/2 be some constants. Let the constant C in the

definition of Θk(Φ, A,C) and Ak(Φ, A,C) be such that C ≥ A2/(2k − 1). Then

Ek(Φ, A) ⊆ Θk(Φ, A,C) ⊆ Ak(Φ, A,C) (33)

Proof of Lemma C.1. First, note that by definition, Ek(Φ, A) is a special case of Θk(Φ, A,C)

without reordering. In particular, in the definition of Ek(Φ, A), since |θj | < Aj−k, then

∞∑
j=J+1

θ2
j ≤ A2

∫ ∞
J

t−2kdt =
A2

2k − 1
J−2k+1

This establishes Ek(Φ, A) ⊆ Θk(Φ, A,C).

Moreover, the restrictions on the tail sum
∑∞

j=J+1 θ
2
j are identical in Θk(Φ, A,C) and

Ak(Φ, A,C). Additional restrictions on individual θj makes Θk(Φ, A,C) a subset ofAk(Φ, A,C).

Lemma C.2. Let Φ denote the CDF of the standard normal random variable, then for

x ≥ 0,

1√
2π

x

x2 + 1
exp

(
−x

2

2

)
< 1− Φ(x) <

1√
2π

1

x
exp

(
−x

2

2

)
.

Proof of Lemma C.2. To show the upper bound, note that for x ≥ 0

1− Φ(x) =

∫ ∞
x

φ(s)ds

=
1√
2π

∫ ∞
x

exp

(
−s

2

2

)
ds

<
1√
2π

∫ ∞
x

s

x
exp

(
−s

2

2

)
ds

=
1√
2π

1

x
exp

(
−x

2

2

)
.

To show the lower bound, let

h(x) := 1− Φ(x)− 1√
2π

x

x2 + 1
exp

(
−x

2

2

)
.

Since h(0) > 0, h′(x) < 0 for all x ≥ 0, and h(x)→ 0 as x→∞, we must have h(x) > 0 for

all x ≥ 0. This gives us the lower bound.
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Lemma C.3. Let {Xi}ni=1 ∼ X be an i.i.d sample with X ∈ [0, 1] ⊆ R. Suppose the density

f of X is bounded above by some constant C̃ and that the orthonormal basis {φj}∞j=1 of

L2([0, 1], µ) is such that max1≤j≤J ‖φj(·)‖∞ ≤MJ for some MJ that potentially grows with

J for all J . Then for some constants K1 and K2,

E

[
max
j≤J

∣∣∣∣∣
n∑
i=1

φj(Xi)− E [φj(Xi)]

∣∣∣∣∣
]
≤ K1

(
MJ log(J) +

√
n
√

log(J)
)

and

E

[
max
j≤J

∣∣∣∣∣
n∑
i=1

φ2
j (Xi)− E

[
φ2
j (Xi)

]∣∣∣∣∣
]
≤ K2

(
M2
J log(J) +

√
nM2

J

√
log(J)

)
.

Proof of Lemma C.3. First, since max1≤j≤J ‖φj(·)‖∞ ≤MJ , we have

|φj(Xi)− E [φj(Xi)] | ≤ 2MJ .

Since the density is bounded by C̃,

max
j≤J

E
[
φ2
j (X)

]
= max

j≤J

∫
φ2
j (x)f(x)dx ≤ max

j≤J
C̃

∫
φ2
j (x)dx = C̃

where the last equality holds by orthonormality. This implies

V ar

(
n∑
i=1

φj(Xi)− E [φj(Xi)]

)
=

n∑
i=1

V ar(φj(Xi)) ≤ nE
[
φ2
j (Xi)

]
≤ nC̃.

Then, by Bernstein’s inequality (Lemma 2.2.9 in van der Vaart and Wellner (1996)),

P

(∣∣∣∣∣
n∑
i=1

φj(Xi)− E [φj(Xi)]

∣∣∣∣∣ > x

)
≤ 2 exp

(
−1

2

x2

nC̃ + 2MJx
3

)

and by maximal inequality (Lemma 2.2.10 in van der Vaart and Wellner (1996)),

E

[
max
j≤J

∣∣∣∣∣
n∑
i=1

φj(Xi)− E [φj(Xi)]

∣∣∣∣∣
]
≤ K1

(
MJ log(J) +

√
n
√

log(J)
)

for some fixed constant K1.

The second part of the statement can be shown using similar arguments. By assumption,
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we have max1≤j≤J ‖φ2
j‖∞ ≤M2

J for some potentially growing MJ for all J . Then

V ar

(
n∑
i=1

φ2
j (Xi)− E

[
φj(Xi)

2
])

= nV ar(φ2
j (X)) ≤ nE

[
φ4
j (X)

]
≤ nM2

JE
[
φj(X)2

]
≤ nC̃M2

J .

Then by Bernstein’s inequality

P

(∣∣∣∣∣
n∑
i=1

φ2
j (Xi)− E

[
φ2
j (Xi)

]∣∣∣∣∣ > x

)
≤ 2 exp

(
−1

2

x2

nC̃M2
J +

2M2
Jx

3

)

which holds for all 1 ≤ j ≤ J , and by Maximal inequality,

E

[
max
j≤J

∣∣∣∣∣
n∑
i=1

φ2
j (Xi)− E

[
φ2
j (Xi)

]∣∣∣∣∣
]
≤ K2

(
M2
J log(J) +

√
nM2

J

√
log(J)

)

for some fixed constant K2.
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