Cross-Validated Conditional Density Estimation and Continuous Difference-in-Differences Models

Lucas Z. Zhang
Department of Economics
University of California, Los Angeles
lucaszz@g.ucla.edu

October 28, 2022

Abstract

In this paper, we study conditional density estimation based on a series representation. In this series representation, each term takes the form of a multiplication of a known function and its conditional expectation. These conditional expectations can be estimated using various machine learning methods for high-dimensional conditioning variables with suitable structures. We propose a data-driven method of selecting the series terms based on a modified cross-validation procedure, and we establish an oracle inequality on the estimation error of such an estimator. Conditional densities have a wide range of applications in various fields of economics, and we add to this literature a new application to nonparametric difference-in-differences models with continuous treatments. For this application, we establish identification, estimation, and inference results under the double/debiased machine learning framework, and we illustrate our methods by revisiting an empirical study by Duflo (2001) on a large policy intervention in Indonesia.

Keywords: Cross-Validation; Nonparametric Estimation; Conditional Density; Oracle Inequality; Difference-in-Differences

JEL classification coes: C1; C13; C14
1 Introduction

Researchers are often interested in how the distribution of an outcome Y depends on co-
variates X. The conditional density $f_{Y|X}$ is one of the most fundamental statistical objects
that summarize such relationships. Its role in economics is especially pronounced with a
wide range of applications. For example, when studying the identification of structural eco-
nomic models, conditional densities are used to establish the connection between what can
be observed from the data and the structural parameters (e.g. Matzkin (2007, 2013)). For
instance, in the auction literature, conditional densities of the bids can be used to recover
the private values of the bidders, and the conditional density of the private values is also a
parameter of interest in its own right (e.g. Guerre et al. (2000); Perrigne and Vuong (2019)).

Other recent examples where the conditional density plays a key role include but are not
limited to: treatment effects with continuous treatment (e.g. Hirano and Imbens (2004);
Kennedy et al. (2017); Su et al. (2019); Semenova and Chernozhukov (2021)), nonparamet-
ric estimation of nonseparable models (e.g. Altonji and Matzkin (2005); Matzkin (2015);
Blundell et al. (2020)), and nonparametric estimation of counterfactual distributions (e.g.
Fortin el al. (2011)). We will examine the role of the conditional density in these examples
in detail in Section 2.

The literature on conditional density estimation is vast and we focus on the nonparamet-
ric estimators. The most well-known nonparametric method is perhaps the kernel method
proposed in Rosenblatt (1969) and a subsequent literature devoted to the kernel bandwidth
selection for such estimator, see for example, Hall et al. (1999, 2004) and the references
therein. Other popular methods include those using the local polynomial regression stud-
ed in Fan et al. (1996) and Fan and Yim (2004), and more recently the methods using
orthogonal series, see for example, Efromovich (2010), Izbicki and Lee (2016, 2017) and
the references therein. However, each of the aforementioned estimators has drawbacks. Al-
though kernel estimators have many attractive theoretical properties, it converges slowly
as the dimension of the conditioning variable becomes large.\footnote{See also Ma and Zhu (2013) for a review of various dimension reduction techniques, which often require very strong assumptions.}
On the other hand, while the estimators studied Izbicki and Lee (2016, 2017) are designed for the setting with high-
dimensional conditioning variables, they are not data-driven in the sense that the theoretical
properties developed require knowledge of the unknown smoothness parameters.\footnote{Both papers propose cross-validation algorithms but the theoretical properties of the resulting estimators are not studied.} Moreover,
even the data-driven estimators from Hall et al. (2004), Fan and Yim (2004) and Efromovich
(2010) have drawbacks: Hall et al. (2004) requires cross-validation searching over each co-
variates, which becomes computationally intractable as the dimension grows; similarly, the
thresholding estimator from Efromovich (2010) requires tensor products of basis over each dimension; the cross-validated estimator proposed by Fan and Yim (2004) performs well in their simulations, but its theoretical properties have yet been studied.\(^3\)

To bridge the gap, we propose a nonparametric conditional density estimator that is not only feasible for high-dimensional conditioning variable settings but also data-driven. First, for a suitable sequence of known functions \(\{\phi_j\}_{j=1}^{\infty}\) of \(Y\), we first show the series expansion,

\[
f_{Y|X}(y|x) = \sum_{j=1}^{\infty} E[\phi_j(Y)|X=x] \phi_j(y)
\]

holds under very general conditions. That is, the conditional density can be expressed as an infinite sum of conditional expectations, each multiplied by a known function. This series expansion motivates an estimator of the form considered in Izbicki and Lee (2017)

\[
\hat{f}_{J}(y|x) = \sum_{j=1}^{J} \hat{E}[\phi_j(Y)|X=x] \phi_j(y).
\]

On the one hand, for high-dimensional conditioning variable \(X\), this formulation allows the researchers to estimate the conditional expectation \(E[\phi_j(Y)|X]\) in each series term using many state-of-the-art machine learning estimators, such as deep neural networks. On the other hand, in practice, it is crucial to choose the tuning parameter \(J\) in a data-driven way. To this end, we resort to a cross-validation procedure, in which the series cutoff \(\hat{J}\) is chosen by minimizing the empirical risk. Our final estimator takes the form of an average of sub-sample estimators using the training samples with this cutoff. Following the general strategy proposed by Lecué and Mitchell (2012), we establish an oracle inequality that provides an upper bound on the estimation error of our estimator. To the best of our knowledge, this is the first such result of a nonparametric conditional density estimator that is both data-driven and feasible in high-dimensional settings. We recognize that there is an extensive literature on cross-validation, and due to space limitations, we refer the readers to Arlot and Celisse (2010) for a comprehensive survey.

To add to the growing literature in economics where conditional density is of key interest, we study in detail an application in the context of difference-in-differences models. Difference-in-differences (DiD for short) is one of the most popular empirical research designs, and recent theoretical works have aimed to accommodate the rich complexities of empirical research. From the early success of Card and Krueger (1994) in the study

\(^3\)There is also a large literature on parametric or semiparametric density/conditional density estimation. For example, Rothfuss et al. (2019) use neural networks to estimate conditional densities with flexible parametric mixture models (see also the references therein for a review on the related literature).
of minimum wage to the generalizations of DiD to, for example, semiparametric setting (Abadie (2005)), nonlinear setting (Athey and Imbens (2006)), and multiple periods and staggered treatment timing settings (e.g., Callaway and Sant’Anna (2021); de Chaisemartin and D’Haultfoeuille (2020); Athey and Imbens (2022)). Although most of the literature has focused on DiD with binary or discrete treatments, recent studies, such as Callaway et al. (2021) and D’Haultfoeuille et al. (2021), have considered DiD settings with continuous treatment.

Our methods expand upon this new line of research by considering a setting similar to Abadie (2005) but with continuous treatments. In particular, we identify the average treatment effect on the treated (ATT) at any continuous treatment intensities under the conditional parallel trend assumption allowing for covariates. In this setting, the density of the treatment conditional on covariates plays the role of a generalized propensity score. The fully nonparametric estimator of the ATT involves averaging over estimated infinite-dimensional nuisance parameters, which is known to incur large biases. To address this issue, in DiD settings with binary or discrete treatments, Sant’Anna and Zhao (2020) propose doubly robust estimators, while Chang (2020) studies doubly/debiased machine learning estimators that allow for high-dimensional controls. Following Chang (2020), we adopt and extend the double/debiased machine learning (DML) framework from CCDDHNR (2018) to allow for continuous treatments. To illustrate the usefulness of our methods, we revisit Duflo (2001), in which the author studies the effect of a large policy intervention in Indonesia (INPRES) on educational outcomes. One analysis in Duflo (2001) relies on a binary DiD comparing high vs. low treatment intensity regions. In contrast, we allow the high-intensity regions to have varied treatment intensities instead of being grouped into one category. While Duflo (2001) finds a small positive effect (but not statistically significant), our more granular analysis finds the ATTs at different treatment intensities vary widely, suggesting significant heterogeneity.

The rest of the paper is organized as follows. In section 2, we motivate by providing a more detailed review of the previously mentioned examples involving conditional densities. In section 3, we first show the validity of the series representations of the conditional densities, then discuss the construction of our cross-validated estimator in detail, and finally, establish the theoretical properties of our estimator. In section 4, we formally set up the DiD models with continuous treatment, show identification, estimation, and inference under the DML framework, and illustrate the usefulness of our results with an empirical application. Finally, we conclude in Section 5. All the proofs will be given in the appendix.
2 Applications

In this section, we discuss several empirical examples in which the estimation of a conditional density plays a crucial role.

Example 2.1 (First Price Auction). Consider the first price auction in the independent private values (IPV) setting studied in Guerre et al. (2000). $I \geq 2$ bidders have i.i.d. private values $\{V_i\}_{i=1}^{I}$ with $V_i \in [v_L, v_H] \subset \mathbb{R}$. Each bidder bids $B_i = s(V_i)$ that maximizes the expected value. If the equilibrium bid function s is monotonic, then using the first order condition, the unobserved private value V_i can be written as

$$V_i = B_i + \frac{1}{I-1} G(B_i | I, X) - g(B_i | I, X)$$

where $G(\cdot | I, X)$ and $g(\cdot | I, X)$ denote the observed equilibrium bid distribution and density conditional on the number of bidders I and the covariates X. This is the main identification equation that enables the researcher to recover the model primitives $(V, f_{V|X,I})$. Using this identification result, Guerre et al. (2000) study the nonparametric estimations of these primitives using kernel methods. For potentially high-dimensional covariates X, Haile et al. (2006) and Perrigne and Vuong (2019) propose single index restrictions on the relationship between the private value V and covariates X to reduce the dimension. While the estimators based on such single index restrictions are easy to implement, they can suffer from significant misspecification errors if the single index assumptions do not hold. In contrast, our method will allow researchers to nonparametrically estimate the conditional bid distribution $f_{V|I,X}$ for high-dimensional X using machine learning methods in a data-driven way without having to rely on such single index restrictions.

Example 2.2 (Nonparametric Nonseparable Models). In many nonparametric nonseparable models, the parameters of interests can be constructively identified as functions of conditional densities of observed variables. For example, Altonji and Matzkin (2005) study a model of the form $Y = m(X, \epsilon_1, \cdots, \epsilon_K)$ where Y, X are observable, $(\epsilon_1, \cdots, \epsilon_K)$ are unobservable, and there exists an external observable Z such that $X \perp (\epsilon_1, \cdots, \epsilon_K) | Z$. Specifically, the authors consider the local average response $\beta(x)$, which is defined as the average derivative of m with respect to x over the distribution $f_{\epsilon_1,\cdots,\epsilon_K | X = x}$. They show that $\beta(x)$ is identified as

$$\beta(x) = \int \frac{\partial E[Y|X=x, Z=z]}{\partial x} f_{Z|X=x}(z) dz.$$

\footnote{A recent related work by Blundell et al. (2020) that studies the individual counterfactuals also uses the external variables. Similarly, the identification and estimation results established in that study rely on the conditional density $f_{Y|X,Z}$ and its estimator.}
A nonparametric estimator can be constructed based on this expression, which requires the estimation of the conditional density \(f_{Z|X} \). For another example, in nonparametric nonseparable simultaneous equation models, Matzkin (2015) shows that the structural derivatives can be constructively identified as the functionals of conditional densities of observed variables. As before, the nonparametric estimations based on such identification results rely on the nonparametric estimation of the conditional densities. The literature typically employs kernel estimators due to their well-established theoretical properties; however, such estimators typically require the researchers to specify the kernel bandwidth, and even with covariates of moderate dimensions, the rate of convergence of such estimators can be slow. Therefore, our data-driven estimator can be used as an alternative that potentially achieves a faster rate of convergence even with high-dimensional covariates.

Example 2.3 (Continuous Treatment). Hirano and Imbens (2004) introduce a generalization of the potential outcome framework to the continuous treatment case, i.e., \(Y(t) \) for \(t \in [t_0, t_1] \), which is referred to as the individual level “dose-response” function, and the parameter of interests is the average dose-response function \(E[Y(t)] \). It is assumed that we observe an i.i.d. sample of \(\{Y_i, X_i, T_i\} \), where \(Y_i := Y_i(T_i) \) denotes the observed potential outcome at the received treatment dose \(T_i \), \(X_i \) is a vector of covariates, and \(T_i \in [t_0, t_1] \) denotes the continuous treatment. Hirano and Imbens (2004) define the conditional density \(f_{T|X} \) as the generalized propensity score. Under the weak unconfoundedness assumption that \(Y(t) \perp T|X \) for all \(t \in [t_0, t_1] \), the average potential outcome at \(T = t \) is identified as

\[
E[Y(t)] = E[E[Y|T=t,f_{T|X}(t|X)]].
\]

The estimation of \(E[Y(t)] \) based on above expression requires the estimation of the conditional density \(f_{T|X} \) as a first step. In Hirano and Imbens (2004), \(f_{T|X} \) is estimated using a linear model, which can fail to capture the complexities of the true conditional densities.

In a related study, Kennedy et al. (2017) propose an alternative identification result of \(E[Y(t)] \) using a doubly robust signal \(Y(\eta) \), where \(\eta = (E[Y|T,X], f_{T|X}) \) denotes the infinite-dimensional nuisance parameters, such that

\[
E[Y(t)] = E[Y(\eta)|T = t].
\]

To estimate \(E[Y(t)] \) using this expression, researchers first need to estimate the conditional density \(f_{T|X} \). Kennedy et al. (2017) estimate such conditional density by first assuming a model \(T = \mu(X) + \sigma(X)\epsilon \), then using a suite of ML methods to estimate \(\mu(X) = E[T|X] \).

\[\text{In recent works, Kallus and Zhou (2018), Su et al. (2019), and Colangelo and Lee (2022) also consider the estimation (and inference in the latter two studies) of } E[Y(t)] \text{ using an alternative score. Nevertheless, the conditional densities still have to be estimated as a first step.}\]
and $\sigma(X) = Var(T|X)$, and in the final step, estimating $f_{T|X}$, now effectively a univariate density estimation problem, using the standard kernel method. Although this approach improves upon Hirano and Imbens (2004), it only captures the relationship between treatment T and covariates X up to a second moment. In contrast to Hirano and Imbens (2004) and Kennedy et al. (2017), our nonparametric conditional density estimator does not require additional modeling assumptions while still being computationally tractable.

Example 2.4 (Conditional Average Partial Derivative). Let $T \in \mathbb{R}$ be the continuous treatment variable, $Y = Y(T)$ the observed potential outcome, and Z a vector of controls. Let X be a subvector of Z. Semenova and Chernozhukov (2021) define the conditional average partial derivative $\partial_t E[Y(t)|X = x]$ as the parameter of interest. Under the conditional independence assumption $\{Y(t), t \in \mathbb{R}\} \perp T|Z$, Semenova and Chernozhukov (2021) show that $\partial_t E[Y(t)|X = x]$ is identified as

$$\partial_t E[Y(t)|X = x] = E[Y(\eta)|X = x]$$ \hspace{1cm} (3)

with the $Y(\eta)$ being a signal that depends on the nuisance parameter $\eta := (E[Y|T,Z], f_{T|Z})$. The estimation of $\partial_t E[Y(t)|X = x]$ based on (3) requires first estimating the nuisance parameters $\hat{\eta}$, particularly the conditional density $f_{T|Z}$. Semenova and Chernozhukov (2021) first assume a model $T = \mu(Z) + \epsilon$ with $\epsilon \perp Z$, then estimate $\mu(Z)$ using LASSO, and finally, estimate the conditional density as a univariate density. Nevertheless, the independence assumption $\epsilon \perp Z$ is unlikely to hold in general, and the conditional density estimator based on such a model can only capture the relationship between T and Z up to the first moment. In contrast, our nonparametric estimator can be employed here without additional modeling assumptions and can capture the rich complexity in $f_{T|X}$ beyond the first moment.

Example 2.5 (Counterfactual Distributions). The counterfactual distributions have been studied extensively in the inequality literature. For example, in the context of DiNardo et al. (1996), the parameter of interest is the counterfactual wage (Y) distribution of the non-unionized workers (group A) if their covariates/attributes had the same distribution of the unionized workers (group B). Under the assumption of the invariance of counterfactual distributions (see Fortin et al. (2011)), the counterfactual density of group A can be identified as

$$f_{\hat{Y}_A}(y) = \int f_{\hat{Y}_A|X_A}(y|x) \frac{dF_{X_B}(x)}{dF_{X_A}(x)} dF_{X_A}(x)$$ \hspace{1cm} (4)

where the ratio of densities can be estimated by

$$\frac{dF_{X_B}(X)}{dF_{X_A}(X)} = \frac{P(D_B = 1|X) P(D_A = 1)}{P(D_A = 1|X) P(D_B = 1)}$$
(see Fortin et al. (2011) section 4.5-4.6 for details). A nonparametric estimator of the counterfactual density can be constructed using the expression in (4), which requires estimation of the conditional density \(f_{Y|X} \), and our estimator can be employed directly here. Alternatively, an orthogonal score for (4) can be constructed for high-dimensional covariates,\(^6\) and our data-driven conditional density estimator that utilizes machine learning methods can be particularly useful in this setting.

3 Conditional Density Estimation

3.1 Series Representation

First, we state a formal result that the conditional densities admit series expansions under fairly general conditions. We make the following assumptions

Assumption 3.1. (i) \(Y \) and \(X \) are Polish spaces; (ii) \((Y, X) \in Y \times X\) are distributed according to a probability measure \(P \) on Borel \(\sigma \)-algebra \(B := \mathcal{B}_Y \otimes \mathcal{B}_X \); (iii) there exist \(\sigma \)-finite Radon measures \(\nu_Y \) and \(\nu_X \) on \(\mathcal{B}_Y \) and \(\mathcal{B}_X \) such that \(P \ll \nu := \nu_Y \otimes \nu_X \).

Assumption 3.1 is a set of mild regularity conditions generally satisfied in most cases in economics. For example, economic variables \(Y \) and \(X \) typically take values in well-behaved subsets \(Y \times X \subseteq \mathbb{R} \times \mathbb{R}^d \), which together with (iii) ensure that \(L^2(\nu_Y) \) is separable so that orthonormal bases exist. Such orthonormal bases will provide the functions used in the series representation of the conditional densities. In particular, (iii) imposes restrictions on the support of \(Y \) and \(X \) and rules out random variables with degenerate distributions; nevertheless, both continuous and discrete \(X \)'s are allowed. Under this assumption, the Radon-Nikodym derivative exists, i.e., density \(f_{Y,X} \) of \(P \) with respect to \(\nu \) exists:

\[
\int_B f_{Y,X}(y, x) d\nu(y, x) = P(B) \quad \text{for all } B \in \mathcal{B}.
\]

The conditional density can then be defined as:

\[
f_X(x) := \int_Y f_{Y,X}(y, x) d\nu_Y(y) \quad \text{and} \quad f_{Y|X}(y|x) := \begin{cases} \frac{f_{Y,X}(y,x)}{f_X(x)} & \text{if } f_X(x) \neq 0 \\ f_{Y,X}(y, x) & \text{if } f_X(x) = 0 \end{cases}.
\]

Note that since \(f_X(x) = 0 \) implies \(f_{Y,X}(\cdot, x) = 0 \) \(\nu_Y \)-a.e., defining \(f_{Y|X}(y|x) := f_{Y,X}(y, x) \) for \(f_X(x) = 0 \) has little impact in a measure-theoretic sense. However, such a definition

\(^6\)Currently we are studying this as a work in progress in a separate project.
ensures \(f_{Y|X}(y|x)f_X(x) = f_{Y,X}(y, x) \) for all \((y, x) \in Y \times X\), which will help us to simplify the formal arguments when showing the series representation. Finally, let \(P_X \) be the projection of \(P \) onto \(X \), that is, for any \(B \in \mathcal{B}_X \), \(P_X(B) = P(Y \times B) \). Then, we have the following proposition.

Proposition 3.1. Suppose Assumption 3.1 is satisfied. Then the following results hold:

(i) \(L^2(\nu_Y) \) is separable;

(ii) If \(f_{Y|X} \in L^2(\nu_Y \otimes P_X) \) and \(\{\phi_j\}_{j=1}^\infty \) is an orthonormal basis for \(L^2(\nu_Y) \), then

\[
P \left(\lim_{J \to \infty} \int (f_{Y|X}(y|X) - \sum_{j=1}^J E[\phi_j(Y)|X] \phi_j(y))^2 d\nu_Y(y) = 0 \right) = 1
\]

(iii) If \(f_{Y|X} \in L^2(\nu_Y \otimes P_X) \) and \(\{\phi_j\}_{j=1}^\infty \) is an orthonormal basis for \(L^2(\nu_Y) \), then

\[
\lim_{J \to \infty} E\left[\int (f_{Y|X}(y|X) - \sum_{j=1}^J E[\phi_j(Y)|X] \phi_j(y))^2 d\nu_Y(y) \right] = 0
\]

if and only if \(\lim_{J \to \infty} \sum_{j=1}^J E[(E[\phi_j(Y)|X])^2] < \infty \).

The proposition formally states that if \(f_{Y|X} \) is square integrable w.r.t the product measure \(\nu_Y \otimes P_X \), the series expansion holds \(P_X \)-a.e. (in the sense that for a.e. \(x \), the series converges in \(L^2(\nu_Y) \)) as well as in \(L^2(\nu_Y \otimes P_X) \). From now on, we will use the following representation whenever the convergence holds:

\[
f_{Y|X}(y|x) = \sum_{j=1}^\infty E[\phi_j(Y)|X = x] \phi_j(y).
\]

In particular, \(L^2(\nu_Y) \) being separable guarantees the existence of a countable orthonormal basis (due to Zorn’s lemma and Gram-Schmidt process). Since \(\nu_Y \) is known, in practice, there are many well-known orthonormal bases for the researchers to choose from. Therefore, each term in the series expansion (5) is the multiplication of a known function and its conditional expectation, which motivates a series estimator for the conditional density. In the next section, we will discuss the construction of our estimator based on such series expansions in detail.
3.2 Cross-Validated Estimator

Suppose we have an i.i.d. random sample \(\{(Y_i, X_i)\}_{i=1}^n \sim (Y, X) \) that satisfies assumption 3.1 and an orthonormal basis \(\{\phi_j\}_{j=1}^\infty \) on \(L^2(\nu_Y) \). Building on the series expansion established in the previous section, an estimator can be constructed by first picking a cutoff \(J \) and estimating the conditional expectations \(h_j(X) := E[\phi_j(Y)|X] \) for \(j = 1, \cdots, J \), then forming

\[
\hat{f}_J(y|x) = \sum_{j=1}^J \hat{h}_j(x)\phi_j(y).
\] (6)

For potentially high-dimensional covariates \(X \), researchers can estimate the conditional expectations \(\{h_j\}_{j=1}^J \) using any of their preferred machine learning methods.

In order to assess the quality of such estimator, we need a distance measure. Since the series expansion holds for \(f_{Y|X} \in L^2(\nu_Y \otimes P_X) \), it is natural to consider the \(L^2 \) norm w.r.t. the product measure \(\nu_Y \otimes P_X \). For notational simplicity and to avoid confusion, for any function \(g \) of \((y, x)\), we denote this norm as the following

\[
\|g\|_H^2 := \int g^2(y, x) d\nu_Y dP_X = E_X[\int g^2(y, X) d\nu_Y(y)]
\]

where the second equality holds by definition since \(P_X \) is the probability measure of \(X \).

With this norm, given \(\{\hat{h}_j\}_{j=1}^J \), we define the estimation error of \(\hat{f}_J \) as

\[
E[\|\hat{f}_J - f_{Y|X}\|^2_H].
\]

In particular, by orthonormality, the estimation error can be expressed as

\[
E[\|\hat{f}_J - f_{Y|X}\|^2_H] = \sum_{j=1}^J E[(\hat{h}_j(X) - h_j(X))^2] + \sum_{j=J+1}^\infty E[h_j^2(X)]
\]

where the expectation in the first sum is taken w.r.t. both \(X \) and \(\{\hat{h}_j\}_{j=1}^J \). This corresponds to the familiar variance-bias trade-off. However, in practice, both the quality of \(\hat{h}_j \)'s and the magnitude of the bias are unknown, which presents a challenge in choosing the optimal cutoff \(J \) that balances the variance and bias.

We propose a data-driven procedure of selecting the series cutoff \(J \) based on a modified cross-validation procedure introduced by Lecué and Mitchell (2012). First, we consider a loss function \(Q : (Y \times X, L^2(\nu_Y \otimes P_X)) \to \mathbb{R} \)

\[
Q((y, x), f) := \int f^2(y, x) d\nu_Y(y) - 2f(y, x).
\] (7)
Then for any function \(f \in L^2(\nu_Y \otimes P_X) \), the risk of \(f \) under this loss \(Q \) takes the form

\[
R(f) := E[Q((Y, X), f)] = \|f - f_{Y|X}\|_H^2 - \|f_{Y|X}\|_H^2
\] (8)

where the second equality holds by law of iterated expectation and the definition of the norm \(\|\cdot\|_H \). In particular, the risk is minimized at the true conditional density \(f_{Y|X} \), which suggests that in practice we can try to find an estimator that minimize the empirical version of this risk. The following cross-validation procedure suggests one way to achieve this.

The first step is to split a sample into training and validating subsamples. Formally, let \(n \) denote the sample size and without loss of generality suppose \(n \) is divisible by some fixed integer \(K \). Then we split the sample\(^7\) \(D^{(n)} := \{(Y_i, X_i)\}_{i=1}^n \) into \(K \) disjoint validating sets \(D^{(n)} \) of equal size \(n_V := n/K \). For each of these validating sets, use the remaining data \(D^{(n_T)} := D^{(n)} \setminus D^{(n_V)} \) of size \(n_T := n - n_V \) as the training set.

In the second step, we use the training sets to train a large dictionary of candidate estimators. To be more precise: first, we pick a large \(p \), which denotes the cardinality of the dictionary; then let \(\{\hat{f}_1, \cdots, \hat{f}_p\} \) be a set of statistics\(^8\) such that its \(j \)-th element is \(\hat{f}_j = \sum_{k=1}^j \hat{h}_k \phi_k \) (recall \(\hat{h}_k := E[\phi_k(Y) | X] \)); finally, on each of the \(k = 1, \cdots, K \) training sets \(D_k^{(n_T)} \) of size \(n_T \), we train the candidate estimators in the dictionary, and we denote the trained dictionary as \(\{\hat{f}(n_T)(D_k^{(n_T)})\}_{j=1}^p \).

In the third step, we use these trained estimators to evaluate a empirical version of the risk on the validating sets. Specifically, we define the K-fold empirical risk of \(\hat{f} \in \{\hat{f}_j\}_{j=1}^p \) as

\[
R_{n,K}(\hat{f}) := \frac{1}{K} \sum_{k=1}^K \frac{1}{n_V} \sum_{i \in D_k^{(n_V)}} Q((Y_i, X_i), \hat{f}(n_T)(D_k^{(n_T)}))
\] (9)

where we use \(D_k^{(n_V)} = D^{(n)} \setminus D_k^{(n_T)} \) to denote the \(k \)-th validating sample.

In the final step, we construct our estimator by first finding the index \(\hat{j}^* \) that corresponds to the smallest K-fold empirical risk, and then average over the estimators \(\hat{f}_{\hat{j}^*} \) trained on each training sets. Formally, we define our estimator as

\[
\hat{f}(n) := \frac{1}{K} \sum_{k=1}^K \hat{f}_{\hat{j}^*}(n_T)(D_k^{(n_T)}) \quad \text{with} \quad \hat{j}^* = \arg \min_{1 \leq j \leq p} R_{n,K}(\hat{f}_j).
\] (10)

\(^7\)Although we assume an i.i.d. random sample, in practice, the data researchers received might have been sorted by certain criteria independent of the data-generating process beforehand. In this case, the researchers can use an external randomization device independent of the data-generating process to reshuffle the data before the sample splitting.

\(^8\)Note that we define a statistic \(\hat{f} = (\hat{f}(m))_{m \in \mathbb{N}} \) as a sequence such that \(\hat{f}(m) \) is an estimator trained with sample \(D^{(m)} \).
Although \(\bar{f} \) aggregates sub-sample estimators, it can still be expressed as a series estimator

\[
\bar{f}(n)(y|x) = \sum_{j=1}^{\hat{j}^*} \hat{h}_j(x) \phi_j(y)
\]

with \(\hat{h}_j := K^{-1} \sum_{k=1}^{K} \hat{h}_j(D_k^{(nT)}) \). That is, we first use CV procedure to select \(\hat{j}^* \), and then we define a new estimator for each conditional expectation \(h_j \) by using the average of sub-sample \(\hat{h}_j \)'s. On the other hand, note that this estimator differs from the typical K-fold CV estimator \(\hat{f}_{VCV} \) that is trained by using the full sample \(D(n) \) after finding the \(\hat{j}^* \) above. In this paper, while we do not compare the quality of \(\bar{f}(n) \) to \(\hat{f}_{VCV} \), we emphasize that \(\bar{f}(n) \) is also constructed using the full sample and does not require re-training after selecting \(\hat{j}^* \).

One potential concern is that the empirical risk \(R_n,K \) takes the form of an empirical average of loss \(Q \), which requires integral calculations. However, the orthonormality of the basis allows us to avoid such integral calculations altogether. Note that the estimators we consider take the form \(\hat{f}_j(x) = \sum_{k=1}^{\hat{j}} \hat{h}_k(x) \phi_k(y) \) with \(\phi_k \)'s being elements in an orthonormal basis. Then using orthonormality, the loss can be rewritten as \(Q((y,x), \hat{f}_j) = \sum_{k=1}^{\hat{j}} \hat{h}_k^2(x) - 2 \hat{f}_j(y,x) \), which only requires calculating simple summations when computing the empirical risk.

Another potential issue is that the estimator may not be a proper conditional density, i.e. \(\int \bar{f}(y|x) d\nu_Y(y) \) may not equal one and the estimator may be negative. The former is easy to solve: if we assume the orthonormal basis \(\{ \phi_j \} \) of \(L^2(\nu_Y) \) contains a constant term, without loss of generality, say \(\phi_1 \), then \(\int \phi_j(y) d\nu_Y(y) = 1 \{ j = 1 \} \), which implies that \(\int \bar{f}(y|x) d\nu_Y(y) = 1 \) always. To address the second potential problem, we consider the following set

\[
C := \{ c \in \ell^2 : \sum_{j=2}^{\infty} c_j \phi_j(y) \geq -\phi_1 \}.
\]

Let \(\hat{h}_j = \hat{E}[\phi_j(Y)|X] \), and for any \(x \), we consider the projection of \(\{ \hat{h}_j(x) \}_{j=2}^{\infty} \) onto \(C \):

\[
\{ \hat{h}_j(x) \}_{j=2}^{\infty} = \arg \min_{c \in C} \| \hat{h}(x) - c \|_{\ell^2}
\]

which can be implemented either on the final estimator \(\bar{f} \) or on the sub-sample estimators \(\hat{f}_j \). In particular, since for each \(x \), \(f_{Y|X}(\cdot|x) \) is a density in \(L^2(\nu_Y) \), one can consider the orthogonal projection algorithms (e.g., the p-algorithm in Gajek (1986)), which can be shown to weakly reduce the estimation error (see Theorem 1 in Gajek (1986) for example). Therefore, our main results will be established for the pre-processed estimators, and in practice researchers can decide what post-processing methods to use if they suspect the estimator might be negative.

\[\text{However, as commented in Lecué and Mitchell (2012), with additional regularity conditions, the estimation error of } \hat{f}_{VCV} \text{ can be bounded using the sub-sample estimator.}\]
3.3 Theoretical Results

We first establish an oracle inequality\(^{10}\) for our estimator, that is, an inequality that relates our estimator to an “ideal” estimator that, in our case, minimizes the estimation error. The proof follows from the general strategy laid out in Lecué and Mitchell (2012) with some modifications, which we defer to the appendix.

Theorem 3.1. Let \(\{(Y_i, X_i)\}_{i=1}^n\) be an i.i.d random sample distributed according to \((Y, X)\) such that assumption 3.1 is satisfied. Assume the conditional density \(f_{Y|X} \in L^2(\nu_Y \otimes P_X)\) and let \(\{\phi_j\}_{j=1}^\infty\) be an orthonormal basis on \(L^2(\nu_Y)\). Moreover, assume \(f_{Y|X}\) and the statistics \(\{\hat{f}_j\}_{j=1}^p\) defined as in (6) are bounded by some constant \(M\). Let \(\bar{f}\) be the estimator defined in (10). Then for any constant \(a > 0\), there exists a constant \(C\) that only depends on \(a\) such that

\[
E[\|\bar{f}^{(n)} - f_{Y|X}\|^2_H] \leq (1 + a) \min_{1 \leq j \leq p} E[\|\hat{f}_j^{(n)} - f_{Y|X}\|^2_H] + C \frac{\log p}{n_V},
\]

(11)

This oracle inequality essentially states that the estimation error of our estimator \(\bar{f}\) is bounded above (up to a constant) by the smallest achievable estimation error for a given dictionary of estimators \(\{\hat{f}_j\}_{j=1}^p\). In particular, the theorem accommodates any machine learning estimators of the conditional expectations \(\hat{h}_l\)'s in each \(\hat{f}_j = \sum_{l=1}^j \hat{h}_l \phi_j(l)\) in the dictionary. Note that the oracle inequality (11) is established under very few assumptions. In fact, the main assumption in the theorem we rely on is that the true conditional density \(f_{Y|X}\) and the dictionary of estimators \(\{\hat{f}_j\}_{j=1}^p\) are uniformly bounded above by some constant. We can even modify the theorem to allow for this bound to grow with \(p\).\(^{11}\) Nevertheless, the convexity of the loss \(Q\) and the associated risk \(R\) defined in section 3.2 plays a major role in the proof. In particular, the convexity of the risk allows us to bound the expected difference \(R(\bar{f}^{(n)}) - R(f_{Y|X})\) by two terms, one being the oracle and the other being a shifted empirical process. The shifted empirical process is then controlled by a maximal inequality modified from Lecué and Mitchell (2012) to suit our estimators, which gives rise to the \(\log(p) / n\) term in equation (11).

On the other hand, to obtain a concrete estimation error, additional structures on our estimator and on the true conditional density \(f_{Y|X}\) are needed. Recall that the estimation

\(^{10}\)See, for example, section 4 in Candes (2006) for an introduction.

\(^{11}\)In the proof, we kept the bound \(M\) explicit throughout the proof and one can make assumptions on how fast \(M\) grows with \(p\) and obtain different bounds on the shifted empirical process.
error of \(\hat{f}_J \) satisfies the variance-bias decomposition

\[
E[\| \hat{f}_J - f_{Y|X} \|_H^2] = \sum_{j=1}^{J} E[(\hat{h}_j(X) - h_j(X))^2] + \sum_{j=J+1}^{\infty} E[h_j^2(X)]
\]

which suggests that this estimation error should be minimized at some \(J \) under suitable regularity conditions. Moreover, as long as \(K \) (as in K-fold cross-validation) is fixed, the sample sizes of the training set \((n_T) \) and validating set \((n_V) \) will be of the same order as the sample size \(n \). Hence, for sufficiently large \(p \), the minimum is achieved in the oracle in equation (11), which establishes an upper bound on the estimation error of our cross-validated estimator \(\bar{f} \). In the next theorem, we show such a result under one possible set of regularity conditions.

Theorem 3.2. Suppose conditions in Theorem 3.1 are satisfied. Moreover, assume that

(i) for some constant \(0 < \delta \leq 1 \), \(E[(\hat{h}_j(X) - h_j(X))^2] \propto n^{-\delta} \) for all \(j \geq 1 \);

(ii) for some constant \(\gamma > 0 \), \(\sum_{j=J+1}^{\infty} E[h_j^2(X)] \lesssim J^{-\gamma} \) for all \(J \geq 0 \).

Then, for \(p \gtrsim n^{\delta/(\gamma+1)} \),

\[
E[\| \bar{f} - f_{Y|X} \|_H^2] = O(n^{-\frac{\gamma}{\gamma+1}} \delta \vee \log \frac{p}{n}).
\]

Condition (i) in Theorem 3.2 makes an assumption on the quality of the estimated conditional expectations \(\hat{h}_j(X) = \hat{E}[\phi_j(Y)|X] \). In general, without further assumptions, e.g., linearity or sparsity, we should expect \(\delta \) to be small for nonparametric estimators and high dimensional \(X \). A growing literature in statistics and machine learning is actively studying the estimation error of various state-of-the-art machine learning estimators. For example, Chen et al. (2022) establish the estimation error in the form of condition (i) (up to a log term) for the deep ReLU neural networks for Hölder classes embedded in high-dimensional spaces. Similarly, Suzuki (2018) and Hayakawa and Suzuki (2020) establish estimation errors of deep neural networks for other function classes. See section 4 in Izbicki and Lee (2017) for several other examples that satisfy (i). In particular, machine learning estimators such as deep neural networks are particularly useful for the setting with high-dimensional covariates \(X \): such ML estimators can often adapt to the intrinsically low-dimensional structures typically exhibited in high-dimensional data, which translates to a much faster rate of convergence (see, e.g., Chen et al. (2022)).

On the other hand, condition (ii) controls the rate of decay of the tail sum of the series and hence the bias. In particular, as shown in Proposition 3.1 (iii), the existence
of the series expansion of the conditional density \(f_{Y|X} \) requires that the tail sum satisfies \(\lim_{J \to \infty} \sum_{j=J+1}^{\infty} E[h_j^2(X)] = 0 \). In the context of the regression and density estimation, condition (ii) is closely related to the full approximation set discussed in Lorentz (1966) and Yang and Barron (1999), and such assumptions place restrictions on the smoothness of the function classes under consideration. For comparison, in the context of full approximation set, see Yang and Barron (1999), with \(\delta = 1 \) and \(\gamma = 2\alpha \), we obtain the minimax rate \(n^{-2\alpha/(2\alpha+1)} \). In general, however, it is difficult to compare our results to the minimax optimal nonparametric estimation rates in \(\mathbb{R}^{d+1} \) (e.g. the minimax rate \(n^{2\alpha/(2\alpha+d+1)} \) in Stone (1982)): in addition to the nonparametric regression problem \(E[\phi_j(Y)|X] \) in \(\mathbb{R}^d \), we also have the additional structure on how fast \(E[(E[\phi_j(Y)|X])^2] \) decays with \(j \).

We want to emphasize three appealing features of our results. First, our conditional density estimator accommodate any estimators for conditional expectations in the series. In particular, the researchers can use the growing variety of ML estimators to estimate each term. The second appeal of our estimator is that it is practical in the setting where the conditioning variable \(X \) is high-dimensional. When the conditions\(^\text{12}\) are satisfied for fast convergence of ML estimators \(\hat{h}_j \) in the high-dimensional setting, our estimator achieves a fast rate of convergence. Last but not least, our estimator is data-driven. The optimal series cutoff is selected by a data-driven cross-validation type of procedure, which does not rely on the smoothness assumptions on the true conditional densities.

In some applications, the researchers may be interested in the conditional density at a point, i.e. \(f_{Y|X}(y|X) \) at a specific \(y \). The next result shows that the MISE rate in Theorem 3.2 can be achieved in this point-wise case under the proposed conditions.

Theorem 3.3. Suppose conditions in Theorem 3.1 and 3.2 are satisfied. Moreover, assume

(i) the orthonormal basis is uniformly bounded;

(ii) for every \(J \leq p \), \(\frac{\overline{EIG}(\Sigma_J)}{\underline{EIG}(\Sigma_J)} = O(1) \), where \(\overline{EIG}(\Sigma_J) \) and \(\underline{EIG}(\Sigma_J) \) denote the largest and smallest eigenvalues of \(\Sigma_J \) respectively and \(\Sigma_J := E[B_J(X)B_J(X)'] \) with \(B_J(X) \) being the column vector \(B_J(X) := (h_j(X) - \hat{h}_j(X))_{j=1}^J \);

(iii) there exist a measurable function \(c(\cdot) \) that satisfies \(E[c^2(X)] < \infty \) and a constant \(\gamma > 0 \) such that for all \(J \geq 0 \), \(|\sum_{j=J+1}^{\infty} h_j(x)\phi_j(y)| \lesssim c(x)J^{-\gamma/2} \).

Then, for \(p \gtrsim n^{\delta/(\gamma+1)} \),

\[
E[\|\tilde{f}^{(n)}(y) - f_{Y|X}(y)\|^2_{\mathcal{P}_X,2}] = O(n^{-\gamma/(\gamma+1)} \sqrt{\frac{\log p}{n}}).
\]

\(^{12}\)For example, such conditions include but are not limited to the sparsity or approximate sparsity assumptions typically assumed in the literature.
In the theorem, condition (i) is needed to ensure that the magnitude of each basis term does not affect the bounds on variance and bias. Examples of bounded bases include trigonometric bases on intervals in \mathbb{R} or Hermite basis on the whole \mathbb{R}. This condition can be relaxed to allow for an unbounded basis, potentially at the cost of a slower rate. Condition (ii) is a high-level assumption, which is determined by the quality of the estimators \hat{h}_j’s. The diagonal entries of the matrix Σ_J measure the variances of each conditional mean estimator in the series, while the off-diagonal entries measure the cross-term correlations. Note that in the integrated case, there is no such correlation due to the orthonormality of ϕ_j’s. Moreover, we assume (iii) in order to control the point-wise bias, which is motivated by the analogous conditions in the (unconditional) orthogonal series density estimations. For the unconditional case, such conditions can be satisfied under certain smoothness assumptions for specific orthonormal bases; see discussions in Wahba (1975) for the cosine basis and Liebscher (1990) for the Hermite basis. In our case, however, we require such conditions on the tail-sum to hold uniformly on the support of the conditioning variable X (up to a square-integrable function $c(\cdot)$).

Remark 3.1. So far we have assumed Y is low-dimensional. In the case when $Y = (Y_1, \cdots, Y_G)$, the same techniques we discussed above can be applied using an orthonormal basis on $Y \subseteq \mathbb{R}^G$ via a tensor product of one-dimensional orthonormal bases. The number of the basis terms formed through such tensor product grows quickly with G and can become intractable for large G. One can consider an alternative approach that relies on a fundamental property in probability theory, namely, the chain rule:

$$f(Y_1, \cdots, Y_G|X_1, \cdots, X_K) = f(Y_1|Y_2, \cdots, Y_G, X_1, \cdots, X_K) \times f(Y_2|Y_3, \cdots, Y_G, X_1, \cdots, X_K) \times \cdots \times f(Y_G|X_1, \cdots, X_K).$$

Then using this expression, instead of having to deal with potentially large number of tensor products of orthonormal bases, we can apply our results on each term in the product and form the final estimator accordingly. A rigorous study of such estimator is left for future research.

In the next section, we provide a detailed application in the context of continuous difference-in-differences models. In this application, conditional density plays a crucial role in identifying the parameter of interest, and its series representation also guides the estimation and inference procedures.
4 Double Debiased Continuous Difference in Differences

Difference-in-Differences (DiD) is one of the most popular research designs in empirical work. While the more common DiD designs concern binary or discrete multi-valued treatments, there has been an increasing amount of interest in cases where the treatments are continuous, see, for example, Callaway et al. (2021); D’Haultfoeuille et al. (2021); de Chaisemartin et al. (2022). In particular, Callaway et al. (2021) examine what the popular two-way fixed effect (TWFE) regressions can identify in the DiD setting with continuous treatment. On the other hand, D’Haultfoeuille et al. (2021) generalize the change-in-changes models studied in Athey and Imbens (2006) to the case of continuous treatment. In contrast to the aforementioned literature, our results generalize Abadie (2005) to settings with continuous treatments. Specifically, we focus on the average treatment effect on the treated (ATT) at any given treatment intensity under a conditional parallel trend assumption that allows for covariates.

One way these covariates enter the identification result is via the density of the continuous treatment conditional on covariates. Therefore, in our setting, the low-dimensional target parameter (ATT) depends on the infinite-dimensional conditional density. This motivates us to consider the estimation and inference of the ATTs under the framework of double/debiased machine learning (DML) studied in CCDDHNR (2018). Similar to the work by Chang (2020) that studies DiD with discrete treatments, we derive scores that enjoy the Neyman orthogonality condition for DiD with continuous treatment in both repeated outcomes (panel data) and repeated cross section settings. Nevertheless, our results require non-trivial modifications over those in the aforementioned literature. Finally, we illustrate the potential usefulness of our method using the data from Ashraf et al. (2020) and revisit the treatment effect on the education of a large policy intervention in Indonesia studied by Duflo (2001).

4.1 Setup and Identification

In this section, we formally set up the difference-in-differences models with continuous treatment following Abadie (2005). First, using the potential outcome notation (e.g. Rubin (1974)), let $Y_{i,t}(0)$ denote the potential outcome of individual i in period t when receiving no treatment, and similarly let $Y_{i,t}(d)$ denote the potential outcome of individual i in period t when receiving treatment with intensity d.

13Such conditional density is commonly referred to as the “generalized propensity score”, see Hirano and Imbens (2004).
The treatment variable D is modeled as a random variable with a mixture distribution: a probability mass at 0 and a continuous distribution on an interval $[d_L, d_H]$ excluding 0. To formalize this mixture distribution, consider a measure $\nu = \delta_0 + \lambda$, with λ being the Lebesgue measure and δ_0 being the Dirac delta at 0. Suppose $D \sim F_D$, then we have $dF_D/d\nu := 1\{D = 0\}P(D = 0) + 1\{D > 0\}f_D$ with f_D being the probability density on $[d_L, d_H]$. In particular, $F_D(0) = \int 1\{D = 0\}dF_Dd\nu = P(D = 0)$ and for any measurable $A \in \mathcal{B}$ such that $0 \notin A$, $F_D(D \in A) = \int_A f_Dd\lambda$. Moreover, we will assume throughout that assumption 3.1 holds for (D, X) so that the conditional probability $P(D = 0|X)$ and density $f_D|X(d|X)$ for $d > 0$ are well defined.

We restrict our attention to the two-period $(t-1, t)$ models, and as in the typical DiD settings, no subject receives treatment at period 0, so we may suppress the time notation in treatment D_i. Let X_i denote the set of individual level control variables. We consider the following set of assumptions:

Assumption 4.1 (Repeated Outcomes). The observed data $\{Y_{i,t-1}, Y_{i,t}, D_i, X_i\}_{i=1}^n$ are independently and identically distributed.

Assumption 4.2 (Repeated Cross Sections).

(i) For each individual i in the pooled sample, the researcher observe $\{Y_i, D_i, X_i, T_i\}$, where T_i is a time indicator = 1 if observation i belongs to the post-treatment sample and = 0 otherwise, and $Y_i = (1 - T_i)Y_{i,t-1} + T_iY_{i,t}$;

(ii) Conditional on $T = 0$, data are i.i.d. from the distribution of (Y_{t-1}, D, X); Conditional on $T = 1$, data are i.i.d. from the distribution of (Y_t, D, X).

Assumption 4.3 (Support).

(i) No subject receives treatment in the pre-treatment period;

(ii) the support of treatment intensity D satisfies $\text{supp}(D) = \{0\} \cup [d_L, d_H]$ with $0 < d_L < d_H \leq \infty$;

(iii) $P(D = 0|X) > 0$ almost surely;

(iv) $1 > P(D = 0) > 0$ and D admits a strictly positive probability density f_D on (d_L, d_H).

Assumption 4.4 (Conditional Parallel Trend). For all $d \in [d_L, d_H]$, the following holds

$$E[Y_t(0) - Y_{t-1}(0)|X, D = d] = E[Y_t(0) - Y_{t-1}(0)|X, D = 0].$$

14This ν is essentially the dominant measure ν_Y we discussed in section 3.1. We drop the subscript here to avoid the confusion in notation, as here the Y is not the variable that we are interested in establishing the density.
Assumptions 4.1 and 4.2 are standard in the DiD literature. In particular, Assumption 4.1 does not allow the covariates to vary over time, while Assumption 4.2(ii) requires that the sample is not stratified by the outcome, treatment, or covariates. Moreover, Assumption 4.3 describes the requirements on the support of the treatment. Specifically, in the continuous DiD setting, the control group \((D = 0)\) must have a positive measure, and the treated group must have a positive likelihood of being treated at any intensity \(d \in (d_L, d_H)\). Finally, Assumption 4.4 is the conditional parallel trend condition that generalizes the discrete cases.

Next, we describe our target parameter. The parameter we are interested in is the average treatment effect on the treated at any given treatment intensity \(d \in (d_L, d_H)\):

\[
ATT(d) := E[Y_t(d) - Y_t(0)|D = d].
\] (12)

The interpretation of this parameter is analogous to the cases with discrete treatment: the expected treatment effect of a treatment with intensity \(d\) given the subjects are treated with intensity \(d\). Note that ATT is a local measure, and in the absence of stronger assumptions, the average treatment effect \(ATE(d) := E[Y_t(d) - Y_t(0)]\) is not identified. The following theorem presents the main results of this section, in which we establish the identifications of \(ATT(d)\) for both repeated outcomes and repeated cross sections settings.

Theorem 4.1 (Identification of ATT).

- **(Repeated Outcomes)** Suppose Assumptions 4.1, 4.3, and 4.4 hold. Then, for any \(d \in (d_L, d_H)\),

\[
ATT(d) = E[Y_t - Y_{t-1}|D = d] - E[(Y_t - Y_{t-1})1\{D = 0\}] \frac{f_{D|X}(d)}{f_{D}(d)P(D = 0|X)}.
\]

- **(Repeated Cross Sections)** Suppose Assumptions 4.2, 4.3, and 4.4 hold. Then, for any \(d \in (d_L, d_H)\),

\[
ATT(d) = E\left[\frac{T - \lambda}{\lambda(1 - \lambda)} Y|D = d\right] - E\left[\frac{T - \lambda}{\lambda(1 - \lambda)} Y 1\{D = 0\}\right] \frac{f_{D|X}(d)}{f_{D}(d)P(D = 0|X)}.
\]

where \(\lambda := P(T_i = 1)\).

The proof is given in the appendix. The main identifying assumption is the conditional parallel trend that allows us to substitute the unobserved counterfactual trend \(E[Y_t(0) -
\(Y_{t-1}(0)|X, D = d \) by the observed trend \(E[Y_t(0) - Y_{t-1}(0)|X, D = 0] \) of the control group. While we derive our results under this parallel trend assumption, it is possible to consider alternative parallel trend assumptions that can be used to identify other causal parameters of interests (see Callaway et al. (2021) Section 3.3 for example).

With Theorem 4.1, one can build estimators for \(ATT(d) \) using the estimated sample analogues. However, with the control variables \(X \) potentially being high-dimensional, the nonparametric estimations of \(f_{D|X}(d) \) and \(P(D = 0|X) \) likely require regularization procedures that introduce non-trivial first order biases (see CCDDHNR (2018) and references therein for a detailed discussion). One way to alleviate such regularization biases is to construct scores that satisfies the so-called Neyman orthogonality property. In the next section, we study how to construct orthogonal scores for our target parameters.

4.2 Orthogonal Scores

First we formally define the Neyman orthogonality following CCDDHNR (2018) and Chang (2020). In particular, we consider the scores that satisfy the orthogonality only with respect to the infinite dimensional nuisance parameter. Let \(\theta_0 \in \Theta \subset \mathbb{R} \) be a low dimensional parameter of interest, which corresponds to part of the \(ATT(d) \) expressions in 4.1 that will be made clear shortly. Let \(\rho_0 \) denote the true low dimensional nuisance parameter(s). For example, \(\rho_0 = (P(T = 1), f_{D}(d)) \) for a given \(d \) in the repeated cross-sectional case. Let \(\eta_0 \in T \) denote the true infinite dimensional nuisance parameters, which in our case include \(f_{D|X}(d|X), P(D = 0|X) \), and other nuisance parameters created when constructing the orthogonal scores. Let’s denote the observable random vector \(Z = (Y, X, D, T) \). Let \(\psi(Z, \theta_0, \rho_0, \eta_0) \in \mathbb{R} \) be a score such that \(E_P[\psi(Z, \theta, \rho, \eta)] = 0 \) if and only if \((\theta, \rho, \eta) = (\theta_0, \rho_0, \eta_0) \).

The Gateaux (directional) derivative with respect to the infinite dimensional nuisance parameter is defined as, for any \(r \in [0, 1) \) and \(\eta \in \mathcal{T} \),

\[
\partial_r E_P[\psi(Z, \theta_0, \rho_0, \eta_0 + r(\eta - \eta_0))].
\]

Moreover, let \(\mathcal{T}_n \subset \mathcal{T} \) be a nuisance realization set in which the estimated infinite dimensional nuisance parameters \(\hat{\eta} \) takes values with high probability. With these notations, we formally define the Neyman orthogonality.

Definition 4.1 (Neyman Orthogonality). A score \(\psi \) satisfies the Neyman orthogonality at \((\theta_0, \rho_0, \eta_0) \) with respect to a nuisance realization set \(\mathcal{T}_n \subset \mathcal{T} \) if

1. the score satisfy the moment condition \(E_P[\psi(Z, \theta_0, \rho_0)] = 0 \);
(ii) for \(r \in [0, 1) \) and \(\eta \in \mathcal{T}_n, \)
\[
\partial_r E_P[\psi(Z, \theta_0, \rho_0, \eta_0 + r(\eta - \eta_0))]|_{r=0} = 0.
\]

In the definition, (i) requires that \(\theta_0 \) satisfies a moment condition while (ii) ensures that the first order bias from estimating the nuisance parameters is zero. We will construct scores that satisfy this orthogonality condition with some modifications that we will clarify shortly. We use the repeated outcomes case as our main example for illustration. The discussion on repeated cross sectional case will be deferred to the supplementary material since it only requires minor modifications.

Recall that in the repeated outcomes case,
\[
ATT(d) = E[\Delta Y | D = d] - E[\Delta Y 1\{D = 0\}] \frac{f_{D|X}(d)}{f_D(d)P(D = 0|X)} := \varphi
\]
where \(\Delta Y := Y_t - Y_{t-1} \) and \(\theta_0 := E[\varphi] \). This expression has two important features. First, the nonparametric estimation of \(E[\Delta Y | D = d] \) and density \(f_D(d) \) make root-\(N \) consistency impossible. This appears to be a common feature in the literature that involves continuous treatment variables, see for example, Kennedy et al. (2017), Semenova and Chernozhukov (2021), and Colangelo and Lee (2022). Second, one can verify that the score \(\varphi \) does not satisfy Neyman orthogonality, and an adjustment term should be added to \(\varphi \) to construct a new score. In general, the adjustment term is straightforward to construct if the nuisance parameters can be written as conditional expectations. However, in our case, the two infinite dimensional nuisance parameters are \(f_{D|X}(d|X) \) and \(P(D = 0|X) \). While \(P(D = 0|X) \) can be expressed as a conditional expectation \(E[1\{D = 0\}|X] \), \(f_{D|X}(d|X) \) being the conditional density presents additional challenges.

To address this issue, we use a modified series representation of the conditional density introduced in Section 3 so that we can approximate the conditional density using a finite series of conditional expectations. Let \(\{\phi_j\}_{j=1}^\infty \) be an orthonormal basis, and for a strictly positive \(d \in (d_L, d_H) \), we can represent \(f_{D|X} \) as
\[
f_{D|X}(d) = \sum_{j=1}^\infty E[\phi_j(D)1\{D > 0\}|X] \phi_j(d).
\]
Then, under suitable regularity conditions,

\[
E[\Delta Y \mathbf{1}\{D = 0\} \frac{f_{D,X}(d|X)}{f_D(d) P(D = 0|X)}] = \lim_{J \to \infty} E[\Delta Y \mathbf{1}\{D = 0\} \frac{f_J(d|X)}{f_D(d) P(D = 0|X)}]
\]

:= \theta_0

where \(f_J(d|X) := \sum_{j=1}^J E[\phi_j(D) \mathbf{1}\{D > 0\}|X]\phi_j(d)\). This expression suggests that we can construct an orthogonal score for each fixed \(J\) instead. Let \(\theta_{0,J} = E[\varphi_J]\) so that the true \(\theta_0\) satisfies \(\theta_0 = \lim_{J \to \infty} \theta_{0,J}\) (and for simplicity, we use the same notation for the repeated cross sections case). We will work with a fixed \(J\) for the remainder of this section and we will discuss the effect on the asymptotic distributions of letting \(J\) grow with sample size in the next section.

To simplify the expressions, denote: \(m_J^d(D) := \sum_{j=1}^J \phi_j(D)\phi_j(d)\mathbf{1}\{D > 0\}\); \(g(X) := P(D = 0|X)\); \(\mathcal{E}_{\Delta Y}(X) := E[\Delta Y \mathbf{1}\{D = 0\}|X]\); \(\mathcal{E}_{\Delta Y}(X) := E[\frac{T - \lambda}{\lambda(1-\lambda)} Y \mathbf{1}\{D = 0\}|X]\) with \(\lambda = P(T = 1)\); \(f_d := f_D(d)\). The following lemma introduce scores that satisfy Neyman orthogonality.

Lemma 4.1. Suppose there exists \(M_J^{(1)} \in L^1(P_{Y_{t-1}, Y_t, D, X})\) and \(M_J^{(2)} \in L^1(P_{Y,T,D,X})\) such that \(|\psi_J^{(1)}| \leq M_J^{(1)}\) and \(|\psi_J^{(2)}| \leq M_J^{(2)}\) almost surely. Then the scores \(\psi_J^{(1)}\) and \(\psi_J^{(2)}\) satisfy Neyman orthogonality defined in (4.1), where

(i) for the repeated outcomes setting,

\[
\psi_J^{(1)} := \Delta Y \mathbf{1}\{D = 0\} \frac{f_J(d|X)}{f_d \cdot g(X)} - \theta_{0,J} + \frac{m_J^d(D) g(X) - \mathbf{1}\{D = 0\} f_J(d|X)}{f_d \cdot g^2(X)} \mathcal{E}_{\Delta Y}(X);
\]

(ii) for the repeated cross sections setting,

\[
\psi_J^{(2)} := \frac{T - \lambda}{\lambda(1-\lambda)} Y \mathbf{1}\{D = 0\} \frac{f_J(d|X)}{f_d \cdot g(X)} - \theta_{0,J} + \frac{m_J^d(D) g(X) - \mathbf{1}\{D = 0\} f_J(d|X)}{f_d \cdot g^2(X)} \mathcal{E}_{\Delta Y}(X).
\]

The proof is given in the appendix, in which we explain the construction of the adjustment term and verify the Neyman orthogonality conditions given in Definition 4.1. The assumption on the existence of integrable functions \(M_J^{(1)}\) and \(M_J^{(2)}\) is a mild regularity condition that allows us to interchange expectation and derivative. This assumption can be

\[\text{For example, if we assume boundedness of the } \Delta Y, f_D \text{ and } f_{D,X}, \text{ we can apply bounded convergence theorem to establish this result.}\]
readily checked under the boundedness of the nuisance parameters in the scores, which will be made precise in the next section. For notational simplicity, we drop the superscripts on \(\psi^{(1)}_J \) and \(\psi^{(2)}_J \) whenever the context is clear. We note that in these new scores, the infinite-dimensional nuisance parameters are \(f_J(d|X) \), \(g(X) \), \(E_{\Delta Y}(X) \), and \(E_{\lambda Y}(X) \), with the latter two being the new ones created when constructing the adjustment terms.

4.3 Estimation and Inference

In this section, we focus our discussion on the repeated outcomes case and we provide the results for the repeated cross sections in the supplementary material. First, we construct an estimator using the orthogonal score (13) from previous section. In particular, we adopt the cross-fitting techniques considered in CCDDHNR (2018), which allow us to prove the asymptotic results without having to verify Donsker conditions.

Algorithm 4.1 (CDID Estimator, Repeated Outcomes). Let \(\{I_k\}_{k=1}^{K} \) denote a random partition of a random sample \(\{(Y_{i,t-1}, Y_{i,t}, D_i, X_i)\}_{i=1}^{N} \), each with equal size \(n = N/K \), and for each \(k \in \{1, \cdots, K\} \), let \(I_k^c : = N \setminus I_k \) denote the complement.

- **Step 1:** for each \(k \), construct

\[
\widehat{ATT}(d)_k := \frac{1}{n} \sum_{i \in I_k} \hat{\epsilon}_{\Delta Y,k} - \Delta Y_i 1\{D_i = 0\} \frac{\hat{f}_{J,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k(X_i)} - \frac{m^d_J(D_i)\hat{g}_k(X_i) - 1\{D_i = 0\} \hat{f}_{J,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k^2(X_i)} \hat{\epsilon}_{\Delta Y,k}(X_i)
\]

where \(\hat{f}_{d,k}, \hat{\epsilon}_{\Delta Y,k}, \hat{f}_{J,k}, \hat{g}_k, \hat{\epsilon}_{\Delta Y,k} \) are the estimators of \(f_d, E[\Delta Y|D = d], f_J(d|X), g(X) \) and \(E_{\Delta Y}(X) \) respectively using the rest of the sample \(I_k^c \). In particular, \(\hat{f}_{d,k}, \hat{\epsilon}_{\Delta Y,k} \) are kernel estimators, \(\hat{g}_k, \hat{\epsilon}_{\Delta Y,k} \) are estimated using ML methods (e.g. deep neural networks), and each term in \(\hat{f}_{J,k} \) is estimated using ML for a large \(J \).

- **Step 2:** average through the \(K \) estimators to obtain the final estimator

\[
\widehat{ATT}(d) := \frac{1}{K} \sum_{k=1}^{K} \widehat{ATT}(d)_k.
\]

As we will establish shortly, to achieve valid inference results, we need an undermoothing \(J \) for the conditional density estimator \(\hat{f}_{J}(d|X) \). This is the main reason why we opt to use a large \(J \) instead of the cross-validated \(J \) in section 3 that is shown to balance the variance and bias and hence may fail to be under-smoothing. Alternatively, we can also consider
using the cross-validated J multiplied by a term that grows with the sample size. Next, we state the regularity conditions that allow us to prove the asymptotic normality of our estimator for the repeated outcomes case. The corresponding conditions for the repeated cross sections are provided in the supplementary material.

Assumption 4.5 (Kernel). The kernel K satisfies:

(i) K is bounded and differentiable;

(ii) $\int K(u)du = 1$, $\int uK(u)du = 0$, $0 < \int u^2K(u)du < \infty$.

and define $K_h(u) := h^{-1}K(u/h)$.

Assumption 4.6 (Orthonormal Basis). \{\(\phi_j\)\}_{j=1}^\infty is an orthonormal basis on the support of D such that

(i) $m^d_J(D) = \sum_{j=1}^J \phi_j(D)\phi_j(d)1\{D > 0\}$ satisfies $\|m^d_J(D)\|_\infty \leq M_J$ for some constant M_J that grows with J;

(ii) $E[(m^d_J(D))^2] \asymp \tilde{M}_J^2$ and $E[|m^d_J(D)|^3] \asymp \tilde{M}_J^3$ for some constant \tilde{M}_J that grows with J.

Assumption 4.7 (Bounds).

(i) for some constants $0 < c < 1$ and $0 < C < \infty$, $f_d > c$, $|E[\Delta Y|D = d]| < C$, and $|E[\Delta Y(X)]| < C$ almost surely;

(ii) for some constants $0 < \kappa < \frac{1}{2}$ and for all $J \geq 1$, $\kappa < f_J(d|X), g(X) < 1 - \kappa$ almost surely;

(iii) f_d and $E[\Delta Y|D = d]$ are twice continuously differentiable at $D = d \in (d_L, d_H)$ with bounded second derivatives.

Assumption 4.8 (Rates).

(i) kernel bandwidth satisfies $Nh \to \infty$ and $\sqrt{Nh^5} = o(1)$ and

\[
\frac{\sqrt{N}}{\max\{M_J, h^{-\frac{1}{2}}\}} E[\sum_{j=J+1}^\infty E[\phi_j(D)1\{D > 0\}|X]|\phi_j(d)] = o(1);
\]

(ii) $M_J/\sqrt{N} = o(1)$;

(iii) with probability tending to 1, $\|\hat{f}_J(d|X) - f_J(d|X)\|_{P,2} \leq M_J\varepsilon_N$, $\|\hat{g}(X) - g(X)\|_{P,2} \leq \varepsilon_N$, $\|\hat{\Delta Y}(X) - \Delta Y(X)\|_{P,2} \leq \varepsilon_N$;
(iv) with probability tending to 1, $\|\hat{E}_{\Delta Y}(X)\|_{P,\infty} < C$, $\kappa < \|\hat{f}_J(d|X)\|_{P,\infty} < 1 - \kappa$, and $\kappa < \|\hat{g}(X)\|_{P,\infty} < 1 - \kappa$.

We use kernel to estimate the low-dimensional parameters $f_D(d)$ and $E[\Delta Y|D = d]$ given its well-established theoretical properties and these kernel estimators will play a role in the asymptotic distributions of our estimator for ATT. We assume the standard regularity conditions for kernel estimators in assumption 4.5, which are sufficient for a triangular array CLT to hold. Assumption 4.6 is a set of regularity conditions on the orthonormal basis: (i) is stated in very general terms and can usually be verified by the choice of the orthonormal basis; similar to the assumptions on the kernel, (ii) is sufficient for Lyapunov conditions to hold so that a triangular array CLT can apply as J growing with n, which can be checked with additional assumptions on the orthonormal basis (e.g. trigonometric basis or Hermite basis). Assumption 4.8 concerns the quality of the nonparametric estimators: (i) requires under-smoothing tuning parameters so that the bias vanishes asymptotically (otherwise asymptotic normality still holds but not centered at θ_0); (iii) is the standard rates conditions in the double/debiased ML literature. We remark that while $N^{-1/4}$ rate are needed for some nuisance estimators, the conditional density \hat{f}_J can converge at a slower rate of $M_JN^{-1/4}$. This does not contradict the existing literature, as in the continuous treatment setting the nonparametric estimators for ATT(d) can not achieve \sqrt{N} rate.

Theorem 4.2 (Repeated Outcomes). Suppose assumptions 4.1, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8 hold. If $\varepsilon_N = o(N^{-1/4})$, then

$$\tilde{ATT}(d) - ATT(d) \xrightarrow{\sigma_N/\sqrt{N}} \mathcal{N}(0, 1)$$

where

$$\sigma_N^2 := E\left[\left(\frac{1}{f_d}(K_h(D - d)\Delta Y - E[K_h(D - d)\Delta Y])
- \psi_J(Z, \theta_J, f_d, \eta) + (\frac{\theta_J f_d}{f_d} - \frac{E[\Delta Y]}{f_d})(K_h(D - d) - E[K_h(D - d)])\right)^2\right].$$

and ψ_J is defined as in (13)

The proof follows the general framework for DML estimators studied in CCDDHNR (2018). The asymptotic variance roughly consists of two parts that contribute to the slower than \sqrt{N} rate: the part from the orthogonal score ψ_J that grows with J and the part from the kernels used to nonparametrically estimate the density $f_D(d)$ and conditional mean.

\[^{17}\text{Alternatively, we can make a set of alternative assumptions and check the weaker Lindeberg's conditions.}\]
\[E[\Delta Y|D = d]. \] We intentionally left the expression of the asymptotic variance in this way to avoid making further assumptions between the magnitudes of the kernel bandwidth \(h \) and \(M_J \) (through series cutoff \(J \)). A similar result for repeated cross sections is shown in the supplementary material, which holds with only minor modifications.

With a consistent estimator \(\hat{\sigma}_N^2 \) based on the expression in the theorem, one can establish a pointwise confidence interval for \(\text{ATT}(d) \). Following CCDDHNR (2018) and Chang (2020), we consider the following cross-fitted variance estimator

\[
\hat{\sigma}_N^2 := \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\left(\frac{1}{f_{d,k}}(K_h(D - d)\Delta Y - E_{n^{c},k}[K_h(D - d)\Delta Y]) \right. \\
- \psi(Z, \hat{\theta}_J, \hat{f}_{d,k}, \hat{\eta}_k) \\
+ \frac{(\hat{\theta}_J - \hat{\xi}^d_{\Delta Y,k})}{f_{d,k}}(K_h(D - d) - E_{n^{c},k}[K_h(D - d)] \right) \right]^2
\]

where

\[
\hat{\theta}_J := \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in I_k} \Delta Y_i 1\{D_i = 0\} \frac{\hat{f}_{J,k}(d|X_i)}{f_{d,k} \cdot \hat{g}_k(X_i)} \\
+ \frac{m^d_J(D_i, \hat{g}_k(X_i)) - \mathbf{1}\{D_i = 0\} \hat{f}_{J,k}(d|X_i)}{f_{d,k} \cdot \hat{g}_k^2(X_i)} \hat{\xi}_{\Delta Y,k}(X_i)
\]

and \(E_{n^{c},k} \) denotes the empirical average using the auxiliary sample \(I_k^n \). Then, the \(1 - \alpha \) confidence interval can be constructed as \([\hat{\text{ATT}}(d) - z_{1-\alpha/2}\hat{\sigma}_N/\sqrt{N}, \hat{\text{ATT}}(d) + z_{1-\alpha/2}\hat{\sigma}_N/\sqrt{N}]\) where \(z_{1-\alpha/2} \) denotes the \(1 - \alpha/2 \) quantile of the standard normal random variable.

Alternatively, we can consider a multiplier bootstrap procedure to construct the confidence interval for our estimator, which has been commonly used in recent studies, see, e.g., Belloni et al. (2017), Su et al. (2019), Cattaneo and Jansson (2021), Colangelo and Lee (2022), and Fan et al. (2022). Specifically, let \(\{\xi_i\}_{i=1}^{N} \) be an i.i.d. sequence of sub-exponential random variables independent of \(\{Y_{i,t-1}, Y_{i,t}, D_i, X_i\}_{i=1}^{N} \) such that \(E[\xi_i] = E[\xi_i^2] = 1 \). Then for each \(b = 1, \ldots, B \), we draw such a sequence \(\{\xi_i\}_{i=1}^{N} \) and construct

\[
\hat{\text{ATT}}(d)_b^* := \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in I_k} \xi_i \hat{f}_{J,k}(d|X_i) \\
+ \frac{m^d_J(D_i, \hat{g}_k(X_i)) - \mathbf{1}\{D_i = 0\} \hat{f}_{J,k}(d|X_i)}{f_{d,k} \cdot \hat{g}_k^2(X_i)} \hat{\xi}_{\Delta Y,k}(X_i).
\]

Let \(c_\alpha \) be the \(\alpha \)'s quantile of \(\{\hat{\text{ATT}}(d)_b^* - \hat{\text{ATT}}(d)\}_{b=1}^{B} \), and we construct the confidence
interval as $[\hat{ATT}(d) - \hat{c}_{1-\alpha/2}, \hat{ATT}(d) - \hat{c}_{\alpha/2}]$.

4.4 Empirical Application: Revisit Duflo (2001)

Duflo (2001) studies the impact of a large policy intervention (INPRES program) taken place in Indonesia between 1973 and 1978. During this period, more than 60 thousands elementary schools were constructed in various regions in Indonesia, which is equivalent to about 2 schools per one thousand school-age children (see Duflo (2001) and Ashraf et al. (2020) for additional background details). Nevertheless, the “intensity” of this policy intervention was not uniform across Indonesia. In particular, Duflo (2001) models the treatment intensity as the number of schools constructed per 1000 children under this policy in each region. In the data set we consider, there are 161 regions, and the program intensity varies widely across the regions. Therefore, we model the treatment intensity as a continuous variable.

One of the main questions explored in Duflo (2001) is the effect of this policy on educational attainment. As pointed out in the study, there is another dimension of variation in the treatment intensity: the cohort of children aged 12-17 in 1974 (cohort 0) would have already passed the elementary school age when the policy first started so that this cohort should not have benefited from the policy at all; on the other hand, the cohort aged 2-6 in 1974 (cohort 1) should have fully experienced the treatment. Moreover, based on the treatment intensity, the author divides the regions into two groups (low intensity group and high intensity group). Exploring the two-dimensional variations in treatment intensity across regions and cohorts, Duflo (2001) initially attempts to estimate the causal effect of this policy on the educational attainment by using a simple difference-in-differences design under the usual parallel trend assumption (see Table 3 in Duflo (2001)).

To study the treatment effect of this policy in our setting, we still consider the same two cohorts, which will be our repeated cross-sections. On the other hand, while we also use the low intensity regions as the control group, we will allow the treatment intensity to vary at the district level in the high intensity group (treatment group). We consider the following setup:

- let Y_i denote the educational level of individual i, which is our outcome variable;

18 We want to emphasize that besides the simple DiD design mentioned here, Duflo (2001) explores the effects of this policy on education and wage in various other research designs in great details. We only intend to use this exercise as an illustration on how to apply the continuous DiD design and our nonparametric estimator in an empirical setting and hopefully to showcase the potential usefulness of our methods.
let $T_i = 1$ if individual i belongs to the cohort 1 (age 2-6 in 1974) and $T_i = 0$ otherwise (age 12-17 in 1974);

- the district level treatment intensity is defined as the schools constructed under this policy per 1000 school-aged children in a given birth district (importantly, this ensures the validity for the repeated cross section setup, as the treatment intensities are known to both cohorts);

- we define the regions with treatment intensities at or below 40 percentile on the distribution as the “low” group, and the regions with treatment intensities at or above 60 percentile on the distribution as the “high” group;

- we normalize the “low” group to have treatment intensity $D = 0$;

- for the “high” group, we re-define the treatment intensity by subtracting the 40 percentile value of the treatment intensity on the overall distribution; this ensures that the treatment intensities $D = d$ for the high group fall under an interval $[d_L, d_H]$ with $d_L > 0$;

- we include the following covariates X_i: gender, religion, land ownership (as an proxy for family wealth), community size, urban/rural residency;

- finally, for our sample, we consider all individuals who had stayed in the regions they were born, which is in contrast with Duflo (2001) in which the author considers the sample of males with valid wage data.

Remark 4.1. The choice of using 40/60 percentiles as cutoffs for low and high intensity regions is rather arbitrary as we aren't able to find the exact criteria used in Duflo (2001) to define the “low” vs. “high” regions. Nevertheless, with this 40/60 cutoff, the mean difference in treatment intensities between “low” and “high” regions in our setting roughly matches those in Duflo (2001).

Remark 4.2. In our setting, we do not include the district level covariates, district fixed effects, and birth-year fixed effects. In particular, since the treatment intensity (and hence the treatment status) is defined at district level, the nonparametric machine learning methods such as Random Forest and deep neural networks can often perfectly predict the treatment status with such district level covariates, which creates issues for estimations due to the zeros in the denominators. Moreover, since the cohorts are defined by the birth-year, including birth-year fixed effects in the covariates will make the cohorts T and covariates X correlated, which violates the sampling assumption in the repeated cross sections setting.
Due to the discrepancy in the data, for comparison purposes, we first replicate the baseline diff-in-diff result between low and high intensity regions ($D_i \in \{0, 1\}$ in this case) between cohorts ($T_i \in \{0, 1\}$) in Duflo (2001), using the following regression specification:

$$Y_i = \beta_0 + \beta_1 T_i + \beta_2 D_i + \beta_3 (T_i \times D_i) + \epsilon_i$$

and we report the estimated ATT in the first row in Table 1. Similar to the results in table 3 in Duflo (2001), our replication results suggest that the treatment effect is positive but not statistically significant. We also estimate the ATT with the double/debiased nonparametric DiD estimator (with binary $D_i \in \{0, 1\}$) proposed in Chang (2020) with the same covariates we considered for our continuous DiD estimator. Specifically, for this DML estimator, we estimate the nuisance parameters using deep neural networks, and we report the estimated ATT in the second row in Table 1. We note that the nonparametric estimator from Chang (2020) with covariates shows a much larger treatment effect and has statistical significance.

Table 1: Diff-in-Diff with Binary Treatment

<table>
<thead>
<tr>
<th>dep var: educ</th>
<th>ATT($D = 1$)</th>
<th>std. err</th>
<th>sample size (N)</th>
<th>covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duflo (Baseline)</td>
<td>0.0876</td>
<td>0.0710</td>
<td>41240</td>
<td>–</td>
</tr>
<tr>
<td>Chang (Nonparametric)</td>
<td>0.5237</td>
<td>0.1759</td>
<td>41240</td>
<td>✓</td>
</tr>
</tbody>
</table>

For our continuous DiD estimator, we consider 17 different treatment intensities ranging from 10-percentile to 90-percentile of the empirical distribution of the treatment intensities in the treatment group. Here are the implementation details:

- we consider a 5-fold cross-fitting; in particular, we first randomly shuffle the data\(^{19}\) before splitting the sample.
- the density $f_D(d)$ and conditional expectation $E[\frac{T - \lambda}{\lambda(1 - \lambda)} Y | D = d]$ are estimated using a Gaussian kernel with bandwidth $h = N^{-1/4}$;
- nuisance parameters $\mathcal{E}_\lambda X$ and $g(X)$ are estimated using either the Random Forest (RF) or deep neural networks (DNN)\(^{20}\); for RF, we set the number of trees to 100 and the max-depth to 50; DNNs are implemented using multi-layer perceptron (MLP) with ReLU activation and optimized using the popular Adam algorithm (Kingma and Ba (2017));

\(^{19}\)The data we initially had was sorted by region. Without reshuffling, the sample splitting would have resulted in observations with certain treatment intensities being contained in only one subsample.

\(^{20}\)Both are readily available in the scikit-learn library in Python.
Table 2: Diff-in-Diff with Continuous Treatment

<table>
<thead>
<tr>
<th>Att(D = d)</th>
<th>Bootstrap CI</th>
<th>Att(D = d)</th>
<th>Bootstrap CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>α = 0.1</td>
<td>1.0065</td>
<td>[0.7743, 1.2474]</td>
<td>1.0193</td>
</tr>
<tr>
<td>(0.2206)</td>
<td>(0.2237)</td>
<td>(0.2215)</td>
<td>(0.2242)</td>
</tr>
<tr>
<td>α = 0.2</td>
<td>0.4428</td>
<td>[0.1843, 0.7116]</td>
<td>0.4519</td>
</tr>
<tr>
<td>(0.2215)</td>
<td>(0.2242)</td>
<td>(0.2967)</td>
<td>(0.3113)</td>
</tr>
<tr>
<td>α = 0.3</td>
<td>0.058</td>
<td>[-0.3434, 0.4730]</td>
<td>0.0706</td>
</tr>
<tr>
<td>(0.2967)</td>
<td>(0.3113)</td>
<td>(0.2872)</td>
<td>(0.2857)</td>
</tr>
<tr>
<td>α = 0.4</td>
<td>1.5853</td>
<td>[1.2388, 1.9886]</td>
<td>1.5417</td>
</tr>
<tr>
<td>(0.2872)</td>
<td>(0.2857)</td>
<td>(0.2890)</td>
<td>(0.2977)</td>
</tr>
<tr>
<td>α = 0.5</td>
<td>0.8010</td>
<td>[0.4473, 1.1696]</td>
<td>0.8496</td>
</tr>
<tr>
<td>(0.2890)</td>
<td>(0.2977)</td>
<td>(0.2803)</td>
<td>(0.2767)</td>
</tr>
<tr>
<td>α = 0.6</td>
<td>0.7720</td>
<td>[0.4244, 1.0869]</td>
<td>0.7700</td>
</tr>
<tr>
<td>(0.2803)</td>
<td>(0.2767)</td>
<td>(0.2632)</td>
<td>(0.2646)</td>
</tr>
<tr>
<td>α = 0.7</td>
<td>0.8861</td>
<td>[0.6224, 1.1342]</td>
<td>0.8837</td>
</tr>
<tr>
<td>(0.2632)</td>
<td>(0.2646)</td>
<td>(0.3834)</td>
<td>(0.3816)</td>
</tr>
<tr>
<td>α = 0.8</td>
<td>-0.3350</td>
<td>[-0.7421, 0.0700]</td>
<td>-0.4176</td>
</tr>
<tr>
<td>(0.3834)</td>
<td>(0.3816)</td>
<td>(0.4281)</td>
<td>(0.4268)</td>
</tr>
<tr>
<td>α = 0.9</td>
<td>1.0055</td>
<td>[0.7257, 1.3195]</td>
<td>1.0152</td>
</tr>
</tbody>
</table>

Notes: (i) α indicates the treatment intensity d being the corresponding percentile values, with standard errors calculated using cross-fitted formula in parentheses; (ii) 95%-CI using multiplier bootstrap; (iii) in column 2, all the nuisance parameters are estimated using the Random Forest (RF) methods; (iv) in column 3, all the nuisance parameters are estimated using the deep neural network of multi-layer perceptron (MLP) class with ReLU activation.

- estimation of \(f_J(d|X) \): we use the cosine basis on \([0, 2\pi]\), which roughly corresponds to the support of the treatment; we consider \(J = N^{1/4} \) so that the under-smoothing assumption is more plausible; each conditional expectation in \(f_J(d|X) \) is estimated using the ML methods mentioned above;

- standard errors are calculated using the cross-fitted estimator defined in (34); we also construct 95-percent bootstrap confidence intervals using the multiplier bootstrap procedure defined in (35): we use Gaussian multipliers \(\{\xi_i\}_{i=1}^B \) with \(E[\xi_i] = Var[\xi_i] = 1 \) for \(B = 1000 \) repetitions.

We present a few selected results for our estimator in Table 2, with visualizations in Figure 1 (since the results using either machine learning methods are relatively close, we only present the graph with results using the Random Forest). In contrast to the binary treatment results, our results suggest that the ATTs vary widely across different treatment intensities. In particular, for the nuisance parameters estimated using either the Random Forest (column 2) or deep neural network (column 3), we have large positive ATTs at some intensities (e.g., 40 and 50 percentile values) but small and even negative values at other intensities.
One potential explanation is that, since the treatment is determined at the district level, the variations may reflect other district-specific characteristics. Indeed, as commented in Duflo (2001), during the same period as the school constructions, there was also a large scale of water and sanitation programs being implemented, which can be a potential confounding factor. Unfortunately, as we mentioned previously, we are unable to include district-specific covariates as they do not have enough variations, in which case ML estimators can use such variables to predict the treatment status perfectly. We also want to emphasize that, echoing Callaway et al. (2021), each of these ATTs is local in nature (i.e., on its own dose-response curve), and the differences between ATTs, say $ATT(d_1) - ATT(d_2)$, can not be interpreted as the average causal response without further assumptions. Nevertheless, our estimation results show significant heterogeneity in treatment effects, which suggests that in practice, the researchers should fully explore the continuous nature of the treatments, and our framework offers one avenue to achieve this.

![Figure 1: Diff-in-Diff with Continuous Treatment](image)

5 Conclusion

In this paper, we have proposed a data-driven conditional density estimator that is feasible for potentially high-dimensional conditioning variables. This estimator is based on a cross-validation procedure, and we have established an oracle inequality on its estimation
error. Importantly, this data-driven conditional density estimator has the potential to accommodate any new machine learning methods (to estimate the conditional expectation in each of the series terms). Thus our estimator can facilitate a better understanding of the dependence relationships between the economic variables albeit the richer data sources and the increasing complexity of the economic models. Moreover, adding to the growing list of economics applications where conditional densities play a crucial role, we study the nonparametric difference-in-differences models with continuous treatments in detail. Such models have important implications in empirical research, and we hope our methods can provide new tools for researchers to analyze the effects of continuous treatment variables in the future.

Acknowledgements

The author would like to express his gratitude to Andres Santos, Denis Chetverikov, and Rosa Matzkin for their generous time and extremely helpful discussions that have led to substantial improvements to this paper. The author would also like to thank Oscar H. Madrid-Padilla, Mingli Chen, Rodrigo Pinto, and participants at UCLA econometrics seminars for their helpful suggestions.
A Proofs

A.1 Proof of Proposition 3.1

For the first claim, note that Y is assumed to be a Polish space, and in particular, any compact subset of a Polish space is also Polish. Given that ν_Y is a Radon measure, by 7.14.13 in Bogachev (2007b), ν_Y on \mathcal{B}_Y is therefore separable. Then by 4.7.63 in Bogachev (2007a), we conclude that $L^2(\nu_Y)$ is separable.

To show the second claim, let $f_{Y|X} \in L^2(\nu_Y \otimes P_X)$ and let $\{\phi_j\}_{j=1}^\infty$ be an orthonormal basis on $L^2(\nu_Y)$. By Fubini’s theorem,

$$\int f^2_{Y|X}(y|x) d\nu_Y dP_X < \infty \implies P_X(x \in X): \int f^2_{Y|X}(y|x) d\nu_Y < \infty = 1.$$ (17)

That is, $f_{Y|X}(\cdot|x) \in L^2(\nu_Y)$ for almost every $x \in X$. Since $\{\phi_j\}_{j=1}^\infty$ is an orthonormal basis on $L^2(\nu_Y)$, by Parseval’s identity (e.g. Theorem 5.27 in Folland (1999)), for $f_{Y|X}(\cdot|x) \in L^2(\nu_Y)$, there exists $\{h_j(x)\}_{j=1}^\infty \in \ell^2$ such that

$$\lim_{J \to \infty} \sum_{j=J+1}^\infty h^2_j(x) = \lim_{J \to \infty} \int (f_{Y|X}(y|x) - \sum_{j=1}^J h_j(x)\phi_j(y))^2 d\nu_Y = 0$$ (18)

where the first equality holds by orthonormality. In particular, for every j,

$$h_j(x) := \int \phi_j(y) f_{Y|X}(y|x) d\nu_Y.$$ (19)

Since (19) holds for a.e. $x \in X$, by the definition of conditional expectation (formally, see Proposition 10.4.18 in Bogachev (2007b)), we have

$$P(h_j(X) = E[\phi_j(Y)|X]) = 1.$$ (20)

Then the claim follows from (18) and (20).

To show the final claim, again we assume $f_{Y|X} \in L^2(\nu_Y \otimes P_X)$ and let $\{\phi_j\}_{j=1}^\infty$ be an orthonormal basis on $L^2(\nu_Y)$. First, for one direction, assume

$$\lim_{J \to \infty} \sum_{j=1}^J E[(E[\phi_j(Y|X)])^2] < \infty.$$ (21)

21 We assume ν_Y to be Radon to rule out pathological cases involving counting measures.

22 Separable measure allows us to construct a countable dense subset of simple functions, and since simple functions are dense in $L^2(\nu_Y)$, then the result follows.
Then by Fatou's Lemma,

\[E \left(\lim_{J \to \infty} \sum_{j=1}^{J} (E[\phi_j(Y|X)])^2 \right) \leq \lim_{J \to \infty} \sum_{j=1}^{J} E[(E[\phi_j(Y|X)])^2] < \infty \]

(22)

which also implies that

\[P(\lim_{J \to \infty} \sum_{j=1}^{J} (E[\phi_j(Y|X)])^2 < \infty) = 1. \]

(23)

By orthonormality,

\[\int (f_{Y|X}(y|X) - \sum_{j=1}^{J} E[\phi_j(Y)|X] \phi_j(y))^2 d\nu_Y \]

\[\leq 2 \int f_{Y|X}^2(y|X) d\nu_Y + \lim_{J \to \infty} 2 \sum_{j=1}^{J} (E[\phi_j(Y)|X])^2 = M(X) \]

By \(f_{Y|X} \in L^2(\nu_Y) \) and (22), \(M(X) \in L^1(P_X) \). Therefore, by the second second claim in the theorem, applying dominated convergence theorem, we have

\[\lim_{J \to \infty} E[\int (f_{Y|X}(y|X) - \sum_{j=1}^{J} E[\phi_j(Y)|X] \phi_j(y))^2 d\nu_Y] = 0. \]

(24)

To show the other direction, assume (24) holds. Note that by orthonormality,

\[\sum_{j=1}^{J} E[(E[\phi_j(Y|X)])^2] = E\left[\sum_{j=1}^{J} \int (E[\phi_j(Y|X)] \phi_j(y))^2 d\nu_Y \right]. \]

Then by \(f_{Y|X} \in L^2(\nu_Y \otimes P_X) \) and (24),

\[\lim_{J \to \infty} E\left[\sum_{j=1}^{J} (E[\phi_j(Y|X)])^2 \right] \]

\[= \lim_{J \to \infty} E\left[\sum_{j=1}^{J} \int (E[\phi_j(Y|X)] \phi_j(y))^2 d\nu_Y \right] \]

\[\leq 2E\left[\int f_{Y|X}^2(y|X) d\nu_Y \right] + 2 \lim_{J \to \infty} E\left[\int (f_{Y|X}(y|X) - \sum_{j=1}^{J} E[\phi_j(Y)|X] \phi_j(y))^2 d\nu_Y \right] < \infty. \]

This concludes the proof. \(\blacksquare \)
A.2 Proof of Theorem 3.1

The proof consists of three main parts. In the first part, we show the loss Q and risk R are convex. Then we apply Lecué and Mitchell (2012) to upper bound the expected loss in $\| \cdot \|_H$ norm by the sum of the “oracle” and a shifted empirical process. Finally, we use boundedness of the true conditional density and of the estimators to control the shifted empirical process.

Step 1: Convexity of Loss

We first show the loss $Q((y, x), f) := \int f^2(y, x) d\nu_Y(y) - 2f(y, x)$ is convex in f. Take any $\lambda \in (0, 1)$ and $f_1, f_2 \in L^2(\nu_Y \otimes P_X)$, suppressing (y, x) in Q for notation simplicity, we have

$$Q(\lambda f_1 + (1 - \lambda)f_2) = \int (\lambda f_1 + (1 - \lambda)f_2)^2 d\nu_Y(y) - 2(\lambda f_1 + (1 - \lambda)f_2)$$

$$\leq \int \lambda f_1^2 + (1 - \lambda)f_2^2 d\nu_Y(y) - 2(\lambda f_1 + (1 - \lambda)f_2)$$

$$= \lambda Q(f_1) + (1 - \lambda)Q(f_2)$$

which proves the convexity of Q in f for any $(y, x) \in Y \times X$. Then the convexity of risk $R(f) := E[Q((Y, X), f)]$ follows from the monotonicity and linearity of expectation:

$$R(\lambda f_1 + (1 - \lambda)f_2) = E[Q((Y, X); \lambda f_1 + (1 - \lambda)f_2)]$$

$$\leq E[\lambda Q((Y, X), f_1) + (1 - \lambda)Q((Y, X), f_2)]$$

$$= \lambda R(f_1) + (1 - \lambda)R(f_2).$$

Using the convexity, next we are going to bound the risk.

Step 2: Bound on the Risk

This part of the proof is adapted from Lecué and Mitchell (2012), which we replicate here for the sake of completeness. Since \hat{j}^* is the index that minimizes $R_{n,K}(\hat{f}_j)$, we define $R_{n,K}^*$ as the minimized empirical risk, that is,

$$R_{n,K}^* = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_Y} \sum_{i \in D_k^{(n_Y)}} Q((Y_i, X_i), \hat{f}_{j^*(n_Y)}(D_k^{(n_Y)})).$$

Then, the difference in the risk of our estimator and the risk at the true conditional density
satisfies
\[
R(\bar{f}(n)) - R(f_{Y|X}) = (1 + a)(R^*_{n,K} - R_{n,K}(f_{Y|X})) + (R(\bar{f}(n)) - R(f_{Y|X})) - (1 + a)(R^*_{n,K} - R_{n,K}(f_{Y|X}))
\]
\[
\leq (1 + a)(R_{n,K}(\hat{f}_j) - R_{n,K}(f_{Y|X})) + (R(\bar{f}(n)) - R(f_{Y|X})) - (1 + a)(R^*_{n,K} - R_{n,K}(f_{Y|X}))
\]
\[
(25)
\]
for all \(a > 0 \) and \(1 \leq j \leq p \). The inequality holds since \(R^*_{n,K} \) is the minimized risk using the dictionary and therefore \(R^*_{n,K} \leq R_{n,K}(\hat{f}_j) \) for all \(1 \leq j \leq p \).

Then, taking expectation of \(R_{n,K}(\hat{f}_j) - R_{n,K}(f_{Y|X}) \) with respect to the full data, we have
\[
E[R_{n,K}(\hat{f}_j) - R_{n,K}(f_{Y|X})] = E\left[\frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_V} \sum_{i \in D^{(n_V)}_k} Q((Y_i, X_i, \hat{f}(n_T)_j(D^{(n_T)}_k))) - Q((Y_i, X_i, f_{Y|X}))\right]
\]
\[
= E\left[\frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_V} \sum_{i \in D^{(n_V)}_k} E[Q((Y_i, X_i, \hat{f}(n_T)_j(D^{(n_T)}_k)))] - E[Q((Y_i, X_i, f_{Y|X}))]\right]
\]
\[
= E_{D^{(n_T)}}[R(\hat{f}(n_T)(D^{(n_T)}))] - R(f_{Y|X})
\]
\[
(26)
\]
where the second equality holds since \(\{(Y_i, X_i)\}_{i=1}^{n} \) are i.i.d. and validating sets \(D^{(n_V)}_k \) are disjoint from each other, and the last equality holds by law of iterated expectation. Moreover, by convexity of \(R \), we have
\[
R(\hat{f}(n)) = R\left(\frac{1}{K} \sum_{k=1}^{K} \hat{f}(n_T)_j(D^{(n_T)}_k)\right)
\]
\[
\leq \frac{1}{K} \sum_{k=1}^{K} R(\hat{f}(n_T)_j(D^{(n_T)}_k)) := \frac{1}{K} \sum_{k=1}^{K} E_P[Q((Y, X), \hat{f}(n_T)_j(D^{(n_T)}_k))]
\]
where P denotes the probability measure with respect to (Y, X). Then

$$E[(R(\tilde{f}^{(n)}) - R(f_{Y|X})) - (1 + a)(R_{n,K} - R_{n, K}(f_{Y|X}))]$$

$$\leq E[\frac{1}{K} \sum_{k=1}^{K} EP[Q((Y, X), \tilde{f}^{(n)(D)}_{j_k})] - EP[Q((Y, X), f_{Y|X})]$$

$$- (1 + a)(\frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_V} \sum_{i \in D^{(n_V)^*}} Q((Y_i, X_i), \tilde{f}^{(n)(D)}_{j_k}) - Q((Y_i, X_i), f_{Y|X})))$$

$$= \frac{1}{K} \sum_{k=1}^{K} E[EP[(Q((Y, X), \tilde{f}^{(n)(D)}_{j_k}) - Q((Y, X), f_{Y|X})]$$

$$- \frac{1 + a}{n_V} \sum_{i \in D^{(n_V)^*}} Q((Y_i, X_i), \tilde{f}^{(n)(D)}_{j_k}) - Q((Y_i, X_i), f_{Y|X}))]]$$

$$\leq E[\max_{1 \leq j \leq p} (P - (1 + a)P_{n_V})(Q((Y, X), \tilde{f}^{(n)(D)}_{j_k}) - Q((Y, X), f_{Y|X})))].$$

In the above derivation, the first inequality holds by convexity and definition of $R, R_{n,K},$ and the second equality holds by the i.i.d sampling assumption and that the validating sets $D^{(n_V)^*}$ are of equal size n_V and are disjoint from each other. In the last line, we use P to denote the expectation E_P and P_{n_V} to denote the empirical average using validating set $D^{(n_V)}$, and the inequality holds since $\tilde{j} \in \{1, \cdots, p\}$.

Then combining (25), (26), and (27), we have

$$E[\|	ilde{f}^{(n)} - f_{Y|X}\|_H^2]$$

$$= E[R(\tilde{f}^{(n)}) - R(f_{Y|X})]$$

$$\leq \min_{1 \leq j \leq p} (1 + a)E_{D^{(n_V)^*}}[R(\tilde{f}^{(n)(D^{(n_V)})}_{j_k}) - R(f_{Y|X})$$

$$+ E[\max_{1 \leq j \leq p} (P - (1 + a)P_{n_V})(Q((Y, X), \tilde{f}^{(n)(D)}_{j_k}) - Q((Y, X), f_{Y|X})))]]$$

$$\leq \min_{1 \leq j \leq p} (1 + a)E[\|	ilde{f}^{(n)}_{j_k} - f_{Y|X}\|_H^2]$$

$$+ E[\max_{1 \leq j \leq p} (P - (1 + a)P_{n_V})(Q((Y, X), \tilde{f}^{(n)(D)}_{j_k}) - Q((Y, X), f_{Y|X})))]]$$

where the first equality and last inequality hold by definition that $R(f) = \|f - f_{Y|X}\|_H^2 - \|f_{Y|X}\|_H^2$ and $R(f_{Y|X}) = -\|f_{Y|X}\|_H^2$ for $f = \tilde{f}^{(n)}$ and $f = \tilde{f}^{(n)(D)}_{j_k}$, and the second inequality holds by boundedness assumption and monotonicity of expectations. In the next section, we bound the maximum of the shifted empirical process term in (28) using a modified maximal inequality inspired by Lecué and Mitchell (2012) Lemma 5.3.

Step 3: A Maximal Inequality on Shifted Empirical Process

37
We first show a maximal inequality. Let \(\{G_1, \ldots, G_p\} \) be a set of measurable functions on \(Z \) and \(\{Z_i\}_{i=1}^n \sim Z \) a sequence of i.i.d. random variables with \(Z \in \mathbf{Z} \) distributed according to a probability measure \(P_Z \) on Borel \(\sigma \)-algebra \(\mathcal{B}_Z \). Moreover, we assume that, for all \(1 \leq j \leq p \), (i) \(E[G_j(Z)] \geq 0 \); (ii) \(\|G_j\|_\infty \leq \bar{M} \) for some constant \(\bar{M} \); (iii) \(E[G_j^2(Z)] \) \(1/2 \) \(C(E[G_j(Z)]) \) \(1/2 \) for some constant \(C > 0 \).

Consider any \(x > 0 \),

\[
P \left[\max_{1 \leq j \leq p} E[G_j(Z)] - (1 + a) \frac{1}{n} \sum_{i=1}^n G_j(Z_i) \geq x \right] \\
\leq \sum_{j=1}^p P \left[E[G_j(Z)] - (1 + a) \frac{1}{n} \sum_{i=1}^n G_j(Z_i) \geq x \right] \\
= \sum_{j=1}^p \left[E[G_j(Z)] - \frac{1}{n} \sum_{i=1}^n G_j(Z_i) \geq \frac{x + aE[G_j(Z)]}{1 + a} \right]
\]

where the inequality holds by union bound. Then, for each term in the sum, we have for some constants \(c_1, c_2, c_3, c_4 \),

\[
P \left[E[G_j(Z)] - \frac{1}{n} \sum_{i=1}^n G_j(Z_i) \geq \frac{x + aE[G_j(Z)]}{1 + a} \right] \\
\leq \exp \left(-c_1 n \left(\frac{x + aE[G_j(Z)]}{1 + a} \right)^2 \frac{1}{E[G_j^2(Z)] + \bar{M} \frac{x + aE[G_j(Z)]}{1 + a}} \right) \\
\leq \exp \left(-c_2 n \left(\frac{x + aE[G_j(Z)]}{1 + a} \right)^2 \frac{x + aE[G_j(Z)]}{1 + a} \right) \\
\leq \exp \left(-c_3 n \frac{(x + aE[G_j(Z)])^2}{E[G_j^2(Z)]} \frac{x + aE[G_j(Z)]}{M} \right) \\
\leq \exp \left(-c_4 n \left(\frac{x + aE[G_j(Z)]}{(E[G_j(Z)])^ {1/2}} \right)^2 \frac{x + aE[G_j(Z)]}{M} \right)
\]

where the first inequality holds by Bernstein’s inequality (see, for example, van der Vaart and Wellner (1996) Lemma 2.2.9), the second inequality holds by definition (\(\wedge \) is the minimum operator), and the last inequality holds by the condition that \(E[G_j^2(Z)] \) \(1/2 \) \(C(E[G_j(Z)]) \) \(1/2 \).

Note that, for \(x \geq E[G_j(Z)] \), we have

\[
\left(\frac{x + aE[G_j(Z)]}{(E[G_j(Z)])^ {1/2}} \right)^2 \geq \left(\frac{x + aE[G_j(Z)]}{a^2} \right)^2 \geq x
\]
where the second inequality holds by the assumption that $E[G_j(Z)] \geq 0$, which implies that
\[
\left(\frac{x + aE[G_j(Z)]}{(E[G_j(Z)])^{1/2}} \right)^2 \wedge \frac{x + aE[G_j(Z)]}{M} \geq \frac{x}{M}.
\]

On the other hand, for $0 < x < E[G_j(Z)]$,
\[
\left(\frac{x + aE[G_j(Z)]}{(E[G_j(Z)])^{1/2}} \right)^2 > \left(\frac{aE[G_j(Z)]}{(E[G_j(Z)])^{1/2}} \right)^2 = a^2E[G_j(Z)] > a^2x
\]
where the first inequality holds by $x > 0$, which again implies that
\[
\left(\frac{x + aE[G_j(Z)]}{(E[G_j(Z)])^{1/2}} \right)^2 \wedge \frac{x + aE[G_j(Z)]}{M} \geq \frac{x}{M}.
\]

Therefore, we have for all $x > 0$,
\[
\left(\frac{x + aE[G_j(Z)]}{(E[G_j(Z)])^{1/2}} \right)^2 \wedge \frac{x + aE[G_j(Z)]}{M} \geq \frac{x}{M}
\]

which implies that for some constant C_1,
\[
P \left[\max_{1 \leq j \leq p} E[G_j(Z)] - (1 + a) \frac{1}{n} \sum_{i=1}^{n} G_j(Z_i) \geq x \right] \leq p \exp(-C_1 n \frac{x}{M}). \tag{29}
\]

Then, for any $u > 0$, we have
\[
E \left[\max_{1 \leq j \leq p} E[G_j(Z)] - (1 + a) \frac{1}{n} \sum_{i=1}^{n} G_j(Z_i) \right] \\
\leq \int_{0}^{\infty} P \left[\max_{1 \leq j \leq p} E[G_j(Z)] - (1 + a) \frac{1}{n} \sum_{i=1}^{n} G_j(Z_i) \geq x \right] dx \\
\leq u + \int_{u}^{\infty} P \left[\max_{1 \leq j \leq p} E[G_j(Z)] - (1 + a) \frac{1}{n} \sum_{i=1}^{n} G_j(Z_i) \geq x \right] dx \\
\leq u + p \int_{u}^{\infty} \exp(-C_1 n \frac{x}{M}) dx \\
\leq u + p \frac{\exp(-C_1 nu/M)}{C_1 n/M}
\]
where the first inequality holds since $E[X] = \int_{R} 1_{x \geq 0}(x) - F_X(x) dx$; the second inequality holds since the probability is bounded above by one; the third inequality holds by 29; the last inequality holds using the fact that $\int_{u}^{\infty} \exp(-Bt) dt \leq \exp(-Bu)/B$ (see, for example, Lecué
Define $x(p)$ to be the unique solution of $x = p \exp(-x)$, which satisfies $x(p) \leq \log(ep)$. Let $u = \tilde{M} x(p)/(nC_1)$, we have

$$u + p \frac{\exp(-C_1 n u / \tilde{M})}{C_1 n / \tilde{M}} = \frac{2 \tilde{M} x(p)}{n C_1} \leq \frac{2 \tilde{M} \log(ep)}{C_1 n}.$$

Therefore, we conclude that, for some constant C_2 that only depends on a and C_1,

$$E \left[\max_{1 \leq j \leq p} E[G_j(Z)] - (1 + a) \frac{1}{n} \sum_{i=1}^{n} G_j(Z_i) \right] \leq C_2 \frac{\tilde{M} \log(p)}{n}.$$

Note that throughout the derivation, we kept the constant \tilde{M} explicit to accommodate the possibility of \tilde{M} potentially growing with p.\(^{23}\)

Step 4: Bound on Shifted Empirical Process

Now we apply this maximal inequality in our case. We need to first verify the assumptions used in Step 3. Conditional on $\{\hat{f}_j\}_{j=1}^p$, let $Z := (Y, X)$ and define

$$G_j(Z) := Q(Z, \hat{f}_j) - Q(Z, f_{Y|X})$$

where Q is the loss defined in 7. First, by definition,

$$E[G_j(Z)] = E[Q(Z, \hat{f}_j) - Q(Z, f_{Y|X})]$$

$$= \|\hat{f}_j - f_{Y|X}\|_H^2 - \|f_{Y|X}\|_H^2 - (-\|f_{Y|X}\|_H^2)$$

$$= \|\hat{f}_j - f_{Y|X}\|_H^2 \geq 0.$$

Next, we check $(E[G_j^2(Z)])^{1/2} \leq C(E[G_j(Z)])^{1/2}$. Plug in the definition of the loss Q, we have

\[
\begin{align*}
(E[G_j^2(Z)])^{1/2} &= \left(E \left[(Q(Z, \hat{f}_j) - Q(Z, f_{Y|X}))^2 \right] \right)^{1/2} \\
&= \left(E \left[(\int \hat{f}_j(y|X)^2 d\nu(y) - 2\hat{f}_j(Y|X) - \int f_{Y|X}(y)^2 d\nu_Y(y) - 2f_{Y|X})^2 \right] \right)^{1/2} \\
&= \left(E \left[(\int (\hat{f}_j(y|X) - f_{Y|X}(y))(\hat{f}_j(y|X) + f_{Y|X}(y))d\nu_Y(y) - 2(\hat{f}_j(Y|X) - f_{Y|X})^2 \right] \right)^{1/2} \\
&\leq C \frac{\tilde{M} \log(p)}{n}.
\end{align*}
\]

\(\text{The constant } C \text{ in assumption (ii), that } (E[G_j^2(Z)])^{1/2} \leq C(E[G_j(Z)])^{1/2}, \text{ can also depend on } \tilde{M}. \text{ The proofs can be modified accordingly to accommodate this possibility.}\)
\[
\leq \left(E \left[\left(\int (\hat{f}_j(y|X) - f_{Y|X}(y))(\hat{f}_j(y|X) + f_{Y|X}(y))d\nu(y) \right)^2 \right] \right)^{\frac{1}{2}} + 2 \left(E \left[(\hat{f}_j(Y|X) - f_{Y|X})^2 \right] \right)^{\frac{1}{2}}
\]

where the last line holds by triangle inequality. For the first term above, we have

\[
E \left[\left(\int (\hat{f}_j(y|X) - f_{Y|X}(y))(\hat{f}_j(y|X) + f_{Y|X}(y))d\nu(y) \right)^2 \right] \\
\leq E \left[\int (\hat{f}_j(y|X) - f_{Y|X}(y))^2d\nu(y) \int (\hat{f}_j(y|X) + f_{Y|X}(y))^2d\nu(y) \right] \\
\leq E \left[\int (\hat{f}_j(y|X) - f_{Y|X}(y))^2d\nu(y)(4M) \int (\hat{f}_j(y|X) + f_{Y|X}(y))^2d\nu(y) \right] \\
\leq 4ME \left[\int (\hat{f}_j(y|X) - f_{Y|X}(y))^2d\nu(y) \right] \\
= 4M\|\hat{f}_j - f_{Y|X}\|_H^2 \\
= 4ME[G_j]
\]

where the first line holds by definition, the second line holds by Cauchy-Schwarz, the third line holds by our assumption that \(\{\hat{f}_j\}_{j=1}^p \) and \(f_{Y|X} \) are uniformly bounded by some constant \(M \), the fourth line holds since \((\hat{f}_j + f_{Y|X})/2 \) is still a density that integrates to 1, and the last line holds by definition of \(E[G_j] = E[Q(\hat{f}_j) - Q(f_{Y|X})] = \|\hat{f}_j - f_{Y|X}\|_H^2 \). For the second term, note that

\[
E[(\hat{f}_j(Y|X) - f_{Y|X})^2] \\
= EXE_{Y|X}[(\hat{f}_j(Y|X) - f_{Y|X})^2] \\
= EX[\int (\hat{f}_j(Y|X) - f_{Y|X})^2f_{Y|X}(y)d\nu(y)] \\
\leq 2MEX[\int (\hat{f}_j(Y|X) - f_{Y|X})^2\nu(y)] \\
= 2M\|\hat{f}_j - f_{Y|X}\|_H^2 \\
= 2ME[G_j]
\]

where the second line holds by law of iterated expectation and the fourth line holds by boundedness of \(f_{Y|X} \). Therefore, combine above results together, we have shown that

\[
(E[G_j^2])^{\frac{1}{2}} \leq 2M^{\frac{1}{2}}(E[G_j])^{\frac{1}{2}}
\]

so we can take the constant \(C := 2M^{1/2} \).
Finally, we check $\|G_j\|_\infty \leq \tilde{M}$ for some constant \tilde{M}. By definition

$$\|G_j\|_\infty = \| \int \hat{f}_j(y|x)^2 d\nu_Y(y) - 2\hat{f}_j(y|x) - \int f_{Y|X}^2(y|x) d\nu_Y(y) - 2f_{Y|X}(y|x) \|_\infty \leq 6M$$

where the inequality holds by boundedness of \hat{f}_j and $f_{Y|X}$, so we can take $\tilde{M} = 6M$.

Then we apply Step 3 conditional on $\{\hat{f}_j\}_{j=1}^p$ and use the law of iterated expectation and monotonicity of expectation to conclude. We want to emphasize that we can allow the bound on the dictionary $\{\hat{f}_j\}_{j=1}^p$ to grow with p. For example, if the bound $M = O(\log(p))$, then there is one extra $\log(p)$ term (or some polynomial power of it) showing up in the rate in the theorem. ■

A.3 Proof of Theorem 3.2

First, given that V is fixed, the training sample size n_T and testing/validating sample size n_V are on the same order as n, so we will drop the subscripts. Let $\{\phi_j\}_{j=1}^\infty$ be an orthonormal basis on $L^2(\nu_Y)$ and let’s denote $h_j = E[\phi_j(Y)|X]$ and \hat{h}_j the corresponding estimator. Then by definition, for a given $j \in \{1, \ldots, p\}$, we have

$$E[\|\hat{f}_j - f_{Y|X}\|_H^2] = E[\| \sum_{k=1}^j \hat{h}_k \phi_k - \sum_{k=1}^\infty h_k \phi_k \|_H^2]$$

$$= E[\| \sum_{k=1}^j (\hat{h}_k - h_k) \phi_k - \sum_{k=j+1}^\infty h_k \phi_k \|_H^2]$$

$$= E[E_X[\int \left(\sum_{k=1}^j (\hat{h}_k(X) - h_k(X)) \phi_k(y) - \sum_{k=j+1}^\infty h_k(X) \phi_k(y) \right)^2 d\nu_Y(y)]]$$

$$= E[E_X[\sum_{k=1}^j \left(\hat{h}_k(X) - h_k(X) \right)^2 + \sum_{k=j+1}^\infty h_k^2(X)]]$$

$$= \sum_{k=1}^j E[(\hat{h}_k(X) - h_k(X))^2] + \sum_{k=j+1}^\infty E[h_k^2(X)]$$

where the second to last equality holds by orthonormality of the basis $\{\phi_j\}_{j=1}^\infty$. By assumption, for some constants $\delta, \gamma > 0$, we have the variance $E[(\hat{h}_k(X) - h_k(X))^2] \asymp n^{-\delta}$ and bias $\sum_{k=j+1}^\infty E[h_k^2(X)] \lesssim j^{-\gamma}$, which implies

$$E[\|\hat{f}_j - f_{Y|X}\|_H^2] \lesssim jn^{-\delta} + j^{-\gamma}.$$
Then minimizing over \(j \), we have the minimizer \(j^* = n^{\delta/(\gamma+1)} \). Given the assumption on \(p \), this minimizer can be attained in our dictionary of estimators, which gives us

\[
\min_{1 \leq j \leq p} E[\|\hat{f}_j - f_{Y|X}\|^2_{L_2}] \lesssim n^{-\frac{\gamma}{\gamma+1} \delta}.
\]

Combine this result with the oracle inequality in 3.1, we have the desired result. ■

A.4 Proof of Theorem 3.3

Let \(h_j(x) := E[\phi_j(Y)|X = x] \) and \(\hat{h}_j(x) \) being its estimator. Let \(y \in \mathbb{Y} \). Then for any \(J \geq 1 \),

\[
E[\|\hat{f}_J(y|X) - f_{Y|X}(y|X)\|^2_{L_2}] = E[\int \left(\sum_{j=1}^{J} h_j(x)\phi_j(y) - f_{Y|X}(y|x) \right)^2 dP_X(x)]
\]

\[
\leq 2E[\int \sum_{j=1}^{J} (h_j(x) - \hat{h}_j(x))^2 \phi_j^2(y) dP_X(x)] + 2 \int \sum_{j=J+1}^{\infty} h_j(x)\phi_j(y)^2 dP_X(x).
\]

First, we focus on the second term. By condition (iv), we have

\[
\int \sum_{j=J+1}^{\infty} h_j(x)\phi_j(y)^2 dP_X(x) \lesssim \int (c(x)J^{-\gamma/2})^2 dP_X(x) = J^{-\gamma} \int c^2(x)dP_X(x) \lesssim J^{-\gamma}.
\]

Note that this is the same upper bound on the bias as the MISE case.

Now consider the first term \(E[\int \sum_{j=1}^{J} (h_j(x) - \hat{h}_j(x))^2 \phi_j^2(y)dP_X(x)] \). Define the column vector \(B_J(X) := (h_j(X) - \hat{h}_j(X))_{j=1}^{J} \), \(P_J(y) := (\phi_j(y))_{j=1}^{J} \), \(\Sigma_J := E[B_J(X)B_J(X)'\right] \), and rewrite

\[
E[\int \sum_{j=1}^{J} (h_j(x) - \hat{h}_j(x))^2 \phi_j^2(y) dP_X(x)] = E[(P_J(y)'B_J(X))^2] = P_J(y)'\Sigma_J P_J(y).
\]

Moreover, let \(\overline{EIG} \) and \(\underline{EIG} \) denote the largest and smallest eigenvalues of \(\Sigma_J \) respectively. Then

\[
P_J(y)'\Sigma_J P_J(y) \leq \overline{EIG} \cdot \|P_J(y)\|^2_2
\]

\[
= \left(\int \|P_J(y)\|^2_2 d\nu_Y(y) \right) \times \frac{\overline{EIG}}{\underline{EIG}} \times \underline{EIG} \int \|P_J(y)\|^2_2 d\nu_Y(y).
\]

43
Note that $\|P_J(y)\|^2_2/\int \|P_J(y)\|^2_2 d\nu_Y(y) = O(1)$ by orthonormality, $\mathbb{E}G/EIG = O(1)$ by assumption, and the last term is bounded by

$$EIG \int \|P_J(y)\|^2_2 d\nu_Y(y) \leq \int P'_J(y)\Sigma_J P_J(y) d\nu_Y(y) = \sum_{j=1}^J E[(\hat{h}_j(X) - h_j(X))^2].$$

where the last equality holds by orthonormality. Combining above results, we have

$$E[\|\hat{f}_J(y|X) - f_Y|X(y|X)\|^2_{\mathbb{P}_X}] \lesssim J^{-\delta} + J^{-\gamma}$$

which is the same bound as in the MISE case. Then use the cross-validated \hat{J}^* and Theorem 3.2, we conclude that

$$E[\bar{f}(y|X) - f_Y|X(y|X)]^2_{\mathbb{P}_X} \lesssim n^{-\frac{2}{\gamma+1}} \log \frac{p}{n}.$$

\[\blacksquare\]

A.5 Proof of Theorem 4.1

By definition, $ATT(d) = E[Y_t(d) - Y_t(0)|D = d]$. First,

$$E[Y_t - Y_{t-1}|D = d] = E[Y_t(d) - Y_{t-1}(0)|D = d]$$

by the fact that $Y_t = Y_t(D)$ and $Y_{t-1} = Y_{t-1}(0)$.

Second,

$$E[(Y_t - Y_{t-1})\mathbf{1}\{D = 0\} f_D|X(d) / f_D(d) P(D = 0|X)]$$

$$= E[(Y_t - Y_{t-1}) f_D|X(d) / f_D(d) P(D = 0|X) | D = 0] P(D = 0)$$

$$= \int E[(Y_t(0) - Y_{t-1}(0)) | X = x, D = 0] f_D|X(d|x) P(D = 0) f_D(d) P(D = 0|X = x) f_X|D=0(x) dx$$

$$= \int E[(Y_t(0) - Y_{t-1}(0)) | X = x, D = d] f_D|X=d(x) P(D = 0) f_D(d) P(D = 0|X = x) f_X|D=d(x) dx$$

$$= E[(Y_t(0) - Y_{t-1}(0)) | D = d]$$
where the first equality holds by the law total probability, second equality holds by law of iterated expectation, the third equality holds by that $Y_t = Y_t(D)$ and $Y_{t-1} = Y_{t-1}(0)$, the fourth equality holds by Bayes’ rule and conditional parallel trend, and the fifth equality holds by Bayes rule.

Then combining above results, we have

$$E[(Y_t - Y_{t-1}|D = d) - E[(Y_t - Y_{t-1})1\{D = 1\} \frac{f_{D|X}(d)}{f_D(d)P(D = 0|X)}]$$

$$= E[Y_t(d) - Y_{t-1}(0)|D = d] - E[Y_t(0) - Y_{t-1}(0)|D = d]$$

$$= E[Y_t(d) - Y_t(0)|D = d]$$

$$= ATT(d)$$

Next, for repeated cross sections, we have

$$E[\frac{T - \lambda}{\lambda(1 - \lambda)} Y|D = d] = E[E[\frac{T - \lambda}{\lambda(1 - \lambda)} Y|D = d, T]]$$

$$= E[\frac{T - \lambda}{\lambda(1 - \lambda)} Y|D = d, T = 1]P(T = 1|D = d)$$

$$+ E[\frac{T - \lambda}{\lambda(1 - \lambda)} Y|D = d, T = 0]P(T = 0|D = d)$$

$$= E[Y_t|D = d] - E[Y_{t-1}|D = d]$$

where the first equality holds by law of iterated expectation, the second equality holds by definition, and the last two equalities hold by assumption 4.2.

Similarly, by law of iterated expectation and assumption 4.2

$$E[\frac{T - \lambda}{\lambda(1 - \lambda)} Y 1\{D = 0\} \frac{f_{D|X}(d)}{f_D(d)P(D = 0|X)}]$$

$$= E[\frac{1 - \lambda}{\lambda(1 - \lambda)} Y 1\{D = 0\} \frac{f_{D|X}(d)}{f_D(d)P(D = 0|X)}|T = 1]P(T = 1)$$

$$+ E[\frac{1 - \lambda}{\lambda(1 - \lambda)} Y 1\{D = 0\} \frac{f_{D|X}(d)}{f_D(d)P(D = 0|X)}|T = 0]P(T = 0)$$

$$= E[\frac{1 - \lambda}{\lambda(1 - \lambda)} Y_t 1\{D = 0\} \frac{f_{D|X}(d)}{f_D(d)P(D = 0|X)}|T = 1]\lambda$$
\[+ E\left[\frac{0 - \lambda}{\lambda(1 - \lambda)} Y_{t-1} \mathbf{1}\{D = 0\} \frac{f_{D|X}(d)}{f_D(d) P(D = 0|X)} | T = 0\} (1 - \lambda) \right] \]
\[= E\left[(Y_t - Y_{t-1}) \mathbf{1}\{D = 0\} \frac{f_{D|X}(d)}{f_D(d) P(D = 0|X)} \right] \]

and the claim follows from the repeated outcomes case.

A.6 Proof of Lemma 4.1

First consider the repeated outcomes case. Recall that the unadjusted score \(\varphi_J \) takes the form:

\[\varphi_J(Z, \theta, f_J^0, f_J^1(d|X), g_0) := \Delta Y \mathbf{1}\{D = 0\} \frac{f_J^0(d|X)}{f_d^0 \cdot g_0(X)} - \theta_{0J} \]

where \(\Delta Y = Y_t - Y_{t-1} \), \(f_d^0 := f_D(d) \), \(f_J^0(d|X) := f_{D|X}(d) \), \(g_0(X) := P(D = 0|X) \). We will add an adjustment term to the original score so that the new score satisfies the Neyman orthogonality wrt the infinite dimensional parameters. Let \(m_J^d(D) := \sum_{j=1}^J \phi_j(D) \phi_j(d) \mathbf{1}\{D > 0\} \).

The two infinite dimensional nuisance parameters are \(f_J^0(X) \) and \(g_0(X) \), and in particular, they satisfy \(f_J^0(d|X) = E[m_J^d(D)|X] \) and \(g_0(X) = E[\mathbf{1}\{D = 0\}|X] \). Then the adjustment term \(c_J \) takes the form:

\[c_J := (m_J^d(D) - f_J^0(d|X)) E[\partial_1 \varphi_J|X] + (\mathbf{1}\{D = 0\} - g_0(X)) E[\partial_2 \varphi_J|X] \]

where \(\partial_1 \) and \(\partial_2 \) denotes the partial derivatives wrt the positions of \(f_J^0(d|X) \) and \(g_0(X) \) respectively. Then, we have

\[c_J = (m_J^d(D) - f_J^0(d|X)) \frac{1}{f_d^0 \cdot g_0(X)} E[\Delta Y \mathbf{1}\{D = 0\}|X] =: \mathcal{E}_{\Delta Y}(X) \]

\[= \mathbf{1}\{D = 0\} - g_0(X) \frac{f_J^0(d|X)}{f_d^0 \cdot g_0(X)} \mathcal{E}_{\Delta Y}(X) \]

\[= \frac{[m_J^d(D) - f_J^0(d|X)] g_0(X) - [\mathbf{1}\{D = 0\} - g_0(X)] f_J^0(d|X)}{f_d^0 \cdot g_0(X)} \mathcal{E}_{\Delta Y}(X) \]

\[= \frac{m_J^d(D) g_0(X) - \mathbf{1}\{D = 0\} f_J^0(d|X)}{f_d^0 \cdot g_0(X)} \mathcal{E}_{\Delta Y}(X) \]

Now it remains to show the new score \(\psi_J := \varphi_J + c_J \) satisfies Neyman orthogonality wrt the nuisance parameters, \(f_J^0(d|X) \), \(g_0(X) \), and \(\mathcal{E}_{\Delta Y}(X) \). First, we need to check the moment condition \(E[\psi_J] = 0 \). Since \(E[\varphi_J] = 0 \), we only need to check \(E[c_J] = 0 \). Then we
have
\[
E[c_J] = E\left[\frac{n_f^d(D)g_0(X) - 1\{D = 0\}f_f^0(d|X)}{f_f^0 \cdot g_0^2(X)}\varepsilon_{\Delta Y}^0(X)\right]
\]
\[
= E\left[\frac{E[n_f^d(D)|X]g_0(X) - E[1\{D = 0\}|X]f_f^0(d|X)}{f_f^0 \cdot g_0^2(X)}\varepsilon_{\Delta Y}^0(X)\right]
\]
\[
= E\left[\frac{f_f^0(d|X)g_0(X) - g_0(X)f_f^0(d|X)}{f_f^0 \cdot g_0^2(X)}\varepsilon_{\Delta Y}^0(X)\right]
\]
\[
= 0
\]
where the second equality holds by law of iterated expectation and the third equality holds by the fact that \(E[n_f^d(D)|X] = f_f^0(d|X)\) and \(E[1\{D = 0\}|X] = g_0(X)\).

Second, we need to show the Gateaux derivative of the score wrt the nuisance parameters \(\eta_0 := (f_f^0(d|X), g_0(X), \varepsilon_{\Delta Y}^0(X))\) vanishes at zero, that is, we need to show
\[
\partial_r E[\psi_J(\eta_0 + r(\eta - \eta_0))]_{r=0} = 0.
\]
By the definition of Gateaux derivative, it suffices to show the partial derivative is zero w.r.t. each nuisance parameter separately. In particular, in the following derivations, by assumption in the lemma, we can use the dominated convergence theorem to interchange the derivatives and the expectations.

w.r.t \(f_f^0(d|X)\):
\[
\partial_r E[\psi_J(f_f^0(d|X) + r(f_f^0(d|X) - f_f^0(d|X)))]_{r=0}
\]
\[
= E[\Delta Y 1\{D = 0\} \frac{1}{f_f^0 \cdot g_0(X)}] - \frac{1\{D = 0\}}{f_f^0 \cdot g_0^2(X)}\varepsilon_{\Delta Y}^0(X)\Delta f_f^0(X)
\]
\[
= E[(E[\Delta Y 1\{D = 0\}|X] \frac{1}{f_f^0 \cdot g_0(X)}] - \frac{E[1\{D = 0\}|X]}{f_f^0 \cdot g_0^2(X)}\varepsilon_{\Delta Y}^0(X)\Delta f_f^0(X)
\]
\[
= E[(E[\varepsilon_{\Delta Y}^0(X)] \frac{1}{f_f^0 \cdot g_0(X)}] - \frac{g_0(X)}{f_f^0 \cdot g_0^2(X)}\varepsilon_{\Delta Y}^0(X)\Delta f_f^0(X)
\]
\[
= 0
\]
where the first equality holds by definition with \(\Delta f_f^0(X) := f_f^0(d|X) - f_f^0(d|X)\), second equality holds by law of iterated expectation, and the third equality holds by the fact that \(E[\Delta Y 1\{D = 0\}|X] = \varepsilon_{\Delta Y}^0(X)\) and \(E[1\{D = 0\}|X] = g_0(X)\).

w.r.t \(g_0(X)\):
\[
\partial_r E[\psi_J(g_0(X) + r(g(X) - g_0(X)))]_{r=0}
\]

47
where the first equality holds by definition with $\Delta g(X) := g(X) - g_0(X)$, second equality holds by law of iterated expectation, and the last equality holds by that $E[\Delta Y 1\{D = 0\}|X] = E_0^\Delta(X)$, $E[m^d_j(D)|X] = f^0_j(d|X)$, and $E[1\{D = 0\}|X] = g_0(X)$.

w.r.t $E_\Delta(X)$:

$$\partial_r E[\psi_j(E_\Delta(X) + r(E_\Delta(X) - E_\Delta(X)))]|_{r=0} = E[-m^d_j(D)g_0(X) - 1\{D = 0\}f^0_j(d|X) \Delta E(X)]$$

$$= E[-E[m^d_j(D)|X]g_0(X) - E[1\{D = 0\}|X]f^0_j(d|X) \Delta E(X)]$$

$$= 0$$

where the first line holds by definition with $\Delta E(X) = E_\Delta(X) - E_\Delta(X)$, the second equality holds by law of iterated expectation, and the last equality holds by the definition that $E[m^d_j(D)|X] = f^0_j(d|X)$ and $E[1\{D = 0\}|X] = g_0(X)$.

This shows that the score ψ_j is Neyman orthogonal w.r.t. the infinite dimensional nuisance parameters. Note that for the repeated cross section case, replace ΔY with $\frac{T - \lambda}{\lambda(1 - \lambda)} Y$, the identical arguments follows. ■

A.7 Proof of Theorem 4.2 (Repeated Outcomes)

Let T_N be the set of square integrable $\eta := (f_j, g(X), E_\Delta(X))$ such that assumption 4.7 holds. Let F_N, E_N be the set of $f > 0$ and E_Δ^d such that $|f - f_0^d| \leq (Nh)^{-1/2}$ and $|E_\Delta^d - E_\Delta^d, 0| \leq (Nh)^{-1/2}$. Then assumption 4.7 implies that, with probability tending to 1, $\eta_k \in T_N$, $f^d_k \in F_N$, and $\hat{E}_\Delta^d \in E_N$.

48
Recall that our estimator is $K^{-1} \sum_{k=1}^{K} \hat{ATT}(d)_k$ where

$$\hat{ATT}(d)_k := \frac{1}{n} \sum_{i \in I_k} \hat{E}^d_{\Delta Y,k} - \Delta Y_i \mathbf{1}\{D_i = 0\} \frac{\hat{f}_{J,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k(X_i)}$$

$$- \frac{m_J(D_i)\hat{g}_k(X_i) - \mathbf{1}\{D_i = 0\} \hat{f}_{J,k}(d|X_i) \hat{E}_j \Delta Y_k(X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k^2(X_i)}$$

Part I: Kernel Regression Results

We first consider (1), $\hat{E}^d_{\Delta Y,k} := \hat{E}[^{\Delta Y}\{D = d\}]$, which is estimated using kernel (and the density f_d is estimated using the same bandwidth h):

$$\hat{E}^d_{\Delta Y,k} = \frac{1}{n} \sum_{i \in I_k} \frac{K_h(D_i - d) \Delta Y_i}{\hat{f}_{d,k}}, \quad \text{where} \quad \hat{f}_{d,k} = \frac{1}{n} \sum_{i \in I_k} K_h(D_i - d)$$

where $K_h(u) := h^{-1}(u/h)$ as defined in the assumption. Then, with the standard results for kernel regression (e.g., Härdle (1990)), we have

$$\frac{1}{K} \sum_{i=1}^{K} \hat{E}^d_{\Delta Y,k} - \mathbb{E}^d_{\Delta Y}
= \frac{1}{N} \sum_{i=1}^{N} \frac{K_h(D_i - d) \Delta Y_i - \mathbb{E}[^{\Delta Y}\{D = d\}] - \mathbb{E}[K_h(D - d) \Delta Y]}{\hat{f}_d}
- \frac{\mathbb{E}[\Delta Y|D = d]}{\hat{f}_d} \frac{1}{N} \sum_{i=1}^{N} K_h(D_i - d) - \mathbb{E}[K_h(D - d)] + o_p((Nh)^{-1/2}).$$

Part II: Orthogonal Scores

To simplify notation, let $\hat{\theta}_J$ be defined as

$$\hat{\theta}_J := \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n} \sum_{i \in I_k} \Delta Y_i \mathbf{1}\{D_i = 1\} \frac{\hat{f}_{J,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k(X_i)}$$
\[+ \frac{m_d^f(D_i)\hat{g}_k(X_i) - 1\{D_i = 0\}f_{d,k}(d|X_i)}{f_d \cdot \hat{g}_k^2(X_i)} \hat{\Delta}_{Y,k}(X_i). \]

Then we can decompose the following difference as

\[\hat{\theta}_J - \theta_0 = \hat{\theta}_J - \theta_{0,J} + \theta_{0,J} - \theta_0 \]

where (†) will be our main focus while the bias term (††) will be taken care of by undersmoothing requirement in assumption 4.7.

By definition,

\[\sqrt{N}(\hat{\theta}_J - \theta_{0,J}) = \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\psi_J(Z_i, \theta_{0,J}, \hat{f}_{d,k}, \hat{\eta}_k)] \]

where \(\psi_J \) is defined as in (13), and \(E_{n,k}(f) = \frac{1}{n} \sum_{i \in I_k} f(Z_i) \) denotes the empirical average. Then we have the following decomposition, using Taylor’s theorem:

\[\sqrt{N}(\hat{\theta}_J - \theta_{0,J}) = \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\psi_J(Z, \theta_{0,J}, \tilde{f}_k, \hat{\eta}_k)] \]

where \(\tilde{f}_k \in (f_0^d, \hat{f}_{d,k}) \). This decomposition provides a roadmap for the remaining of the proof in part II. There are roughly four steps. In the first step, we show the second-order term (33) vanishes rapidly and does not contribute to the asymptotic variance. In the second step, we bound first order term (32), which potentially contributes to the asymptotic variance. In step 3, we expand (31) around the nuisance parameter \(\hat{\eta}_k \), in which the first order bias disappears by Neyman orthogonality, and we show the second order terms have no impact on the asymptotics. In the final step, we verify the results used in the first two steps and conclude.

Step 1: Second Order Terms

First, we consider (33). By triangle inequality, we have

\[|E_{n,k}[\partial^2_J \psi_J(Z, \theta_{0,J}, \tilde{f}_k, \hat{\eta}_k)] - E[\partial^2_J \psi_J(Z, \theta_{0,J}, f_0^d, \eta_0)]| \]
Then by conditional Markov’s inequality, (\hat{J})

We first bound \(J \)

Step 1: \(f_d \) is bounded away from zero and the score \(\psi \) is bounded by \(M_J \),

\[
\partial_f^2 \psi_J(Z, \theta_{0J}, f_d^0, \eta_0) = \frac{2}{(f_d^0)^2} (\psi_j(Z, \theta_{0J}, f_d^0, \eta_0) + \theta_{0J})
\]

which implies that

\[
E[|J_{2k}|] \leq \frac{1}{N} E[(\partial_f^2 \psi_J(Z, \theta_{0J}, f_d^0, \eta_0))^2] \leq M_J^2/N
\]

and by Markov’s inequality, we have \(J_{2k} \leq O_p(M_J/\sqrt{N}) \). For \(J_{1k} \), we have

\[
E[J_{1k}^2 | I_k] = E[\| E_{n,k}[\partial_f^2 \psi_J(Z, \theta_{0J}, \hat{f}_k, \hat{\eta}_k)] - E_{n,k}[\partial_f^2 \psi_J(Z, \theta_{0J}, f_d^0, \eta_0)] \|^2 | I_k] \\
\leq \sup_{f \in F_N, \eta \in T_N} E[|\partial_f^2 \psi_J(Z, \theta_{0J}, f, \eta) - \partial_f^2 \psi_J(Z, \theta_{0J}, f_d^0, \eta_0)|^2] \\
\leq \sup_{f \in F_N, \eta \in T_N} E[|\partial_f^2 \psi_J(Z, \theta_{0J}, f, \eta)|^2 + |\partial_f^2 \psi_J(Z, \theta_{0J}, f_d^0, \eta_0)|^2] \\
\leq M_J^2 \leq O_p((Nh)^{-1}),
\]

we conclude that (33) = \(o_p(1) \). We will show (a) at the end of this section.

Step 2: First Order Terms

To bound (32), we use first the triangle inequality to obtain the decomposition

\[
\leq |E_{n,k}[\partial_f \psi_J(Z, \theta_{0J}, f_d^0, \hat{\eta}_k)] - E[\partial_f \psi_J(Z, \theta_{0J}, f_d^0, \eta_0)]| \\
\leq |E_{n,k}[\partial_f \psi_J(Z, \theta_{0J}, f_d^0, \hat{\eta}_k)] - E_{n,k}[\partial_f \psi_J(Z, \theta_{0J}, f_d^0, \eta_0)]| \\
+ |E_{n,k}[\partial_f \psi_J(Z, \theta_{0J}, f_d^0, \eta_0)] - E[\partial_f \psi_J(Z, \theta_{0J}, f_d^0, \eta_0)]|.
\]

We first bound \(J_{4k} \). Note that since \(f_d^0 \) is bounded away from zero and the score \(\psi \) is bounded by \(M_J \), we have

\[
\partial_f \psi_J(Z, \theta_{0J}, f_d^0, \eta_0) = -\frac{1}{f_d^0} (\psi_j(Z, \theta_{0J}, f_d^0, \eta_0) + \theta_{0J})
\]

51
which implies that
\[E[J_{4k}^2] \leq \frac{1}{N} E[(\partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \eta_0))^2] \lesssim M_f^2/N \]
and by Markov’s inequality, we have \(J_{4k} \leq O_p(M_f/\sqrt{N}) \). With the assumption that \(M_f/\sqrt{N} = o(1) \), we have \(J_{4k} = o_p(1) \).

Second, to bound \(J_{3k} \), note that
\[
E[J_{3k}^2 | I_k^c] = E[E_{n,k}[\partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \hat{\eta}_k)] - E_{n,k}[\partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \eta_0)]^2 | I_k^c]
\leq \sup_{\eta \in T_N} E[|\partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \eta) - \partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \eta_0)|^2 | I_k^c]
\leq \sup_{\eta \in T_N} E[|\partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \eta) - \partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \eta_0)|^2]
\lesssim M_f^2/N \quad \text{(b)}
\]
where the first equation holds by definition, the second line holds by Cauchy-Schwarz and the third line holds by the construction that all the parameters are estimated using auxiliary sample \(I_k^c \). Then we conclude with the conditional Markov’s inequality that \(J_{3k} = o_p(1) \). Therefore,
\[E_{n,k}[\partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \hat{\eta}_k)] \rightarrow^p E[\partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \eta_0)] := S_f^0 \]
Note that the kernel density estimator satisfies \((\hat{f}_{d,k} - f_{d}^{0}) = O_p((Nh)^{1/2}) \), so we can rewrite (32) as
\[
(32) = \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\partial_f \psi_j(Z, \theta_{0J}, f_{d}^{0}, \hat{\eta}_k)](\hat{f}_{d,k} - f_{d}^{0})
= \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} S_f^0(\hat{f}_{d,k} - f_{d}^{0}) + o_p(h^{-1/2})
= \sqrt{N} \frac{1}{N} \sum_{i=1}^{N} S_f^0(K_h(D_i - d) - E[K_h(D - d)] + o_p(h^{-1/2})
\]
where the last equality holds by the definition that \(\hat{f}_{d,k} - f_{d}^{0} = (N - n)^{-1} \sum_{i \in I_k^c} K_h(D_i - d) - E[K_h(D - d)] + O(h^2) \) (where \(N - n \) is the sample size of each auxiliary subsample used to estimate the nuisance parameters), the under-smoothing assumption that \(\sqrt{Nh^2} \leq O(1) \), and the fact that \(K^{-1} \sum_{k=1}^{K} (\hat{f}_{d,k} - E[K_h(D - d)]) = \frac{1}{N} \sum_{i=1}^{N} (K_h(D_i - d) - E[K_h(D - d)]) \). In particular, the kernel expression in the last line is mean-zero and it will contribute to the asymptotic variance.
Step 3: “Neyman Term”

Now we consider (31), which we can rewrite as

\[\sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\psi_J(Z, \theta_{0J}, f_d^0, \hat{\eta}_k)] \]

\[= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi_J(Z_i, \theta_{0J}, f_d^0, \eta_0) \]

\[+ \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} \left(E_{n,k}[\psi_J(Z, \theta_{0J}, f_d^0, \hat{\eta}_k)] - E_{n,k}[\psi_J(Z_i, \theta_{0J}, f_d^0, \eta_0)] \right) \]

Since \(K \) is fixed, \(n = O(N) \), it suffices to show that \(R_{nk} = o_p(N^{-1/2}M_J) \), so it vanishes when scaled by the (square root of) asymptotic variance. Note that by triangle inequality, we have the following decomposition

\[|R_{n,k}| \leq \frac{R_{1k} + R_{2k}}{\sqrt{n}} \]

where

\[R_{1k} := |G_{nk}[\psi_J(Z, \theta_{0J}, f_d^0, \hat{\eta}_k)] - G_{nk}[\psi_J(Z, \theta_{0J}, f_d^0, \eta_0)]| \]

with \(G_{nk}(f) = \sqrt{n}(P_n - P)(f) \) denote the empirical process, and with some abuse of notation, it will also be used to denote conditional version of the empirical process conditioning on the auxiliary sample \(I_k^c \). Moreover,

\[R_{2k} := \sqrt{n}|E[\psi_J(Z, \theta_{0J}, f_d^0, \hat{\eta}_k)|I_k^c] - E[\psi_J(Z, \theta_{0J}, f_d^0, \eta_0)|I_k^c]|. \]

For simplicity, let’s suppress other arguments in \(\psi \) and denote \(\psi^i_k := \psi_J(Z_i, \theta_{0J}, f_d^0, \hat{\eta}_k) \).

First, we consider \(R_{1k} \), in which

\[G_{nk}\psi_{\hat{\eta}k} - G_{nk}\psi_{\eta0} = \sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \psi^i_{\hat{\eta}k} - \psi^i_{\eta0} - E[\psi^i_{\hat{\eta}k}|I_k^c] - E[\psi^i_{\eta0}] \]

\[:= \Delta_{ik} \]

In particular, it can be shown that \(E[\Delta_{ik}\Delta_{jk}] = 0 \) for all \(i \neq j \) using the i.i.d. assumption of the data and that the nuisance parameter \(\hat{\eta}_k \) is estimated using the auxiliary sample. Then, we have

\[E[R_{1k}^2|I_k^c] \leq E[\Delta_{ik}^2|I_k^c] \]

\[\leq E[(\psi^i_{\hat{\eta}k} - \psi^i_{\eta0})^2|I_k^c] \]

53
\[
\leq \sup_{\eta \in T_N} E[(\psi^i_\eta - \psi^i_{\eta_0})^2 | I_k^c] \\
\leq \sup_{\eta \in T_N} E[(\psi^i_\eta - \psi^i_{\eta_0})^2] \\
\lesssim M_j^2 \varepsilon_N^2 \quad (c)
\]

and using the conditional Markov’s inequality, we conclude that \(R_{1k} = o_p(M_j) \). Now we bound \(R_{2k} \). Note that by definition of the score, \(E[\psi_J(Z, \theta_{0J}, f_d^0, \eta_0)] = 0 \), so it suffices to bound \(E[\psi_J(Z, \theta_{0J}, f_d^0, \hat{\eta}_k)|I_k^c] \). Suppressing other arguments in the score, define

\[
h_k(r) := E[\psi_J(\eta_0 + r(\hat{\eta}_k - \eta_0)) | I_k^c]
\]

where by definition \(h_k(0) = E[\psi_J(\eta_0)|I_k^c] = 0 \) and \(h_k(1) = E[\psi_J(\hat{\eta}_k)|I_k^c] \). Use Taylor’s theorem, expand \(h_k(1) \) around 0, we have

\[
h_k(1) = h_k(0) + h_k'(0) + \frac{1}{2} h_k''(\bar{r}) \quad \bar{r} \in (0, 1).
\]

Note that, by Neyman orthogonality,

\[
h_k'(0) = \partial_\eta E[\psi_J(\eta_0)][\hat{\eta}_k - \eta_0] = 0
\]

and use that fact that \(h_k(0) = 0 \), we have

\[
R_{2k} = \sqrt{n}|h_k(1)| = \sqrt{n}|h_k''(\bar{r})| \\
\leq \sup_{r \in (0, 1), \eta \in T_N} \sqrt{n}|\partial_\eta^2 E[\psi_J(\eta_0 + r(\hat{\eta}_k - \eta_0))]| \\
\lesssim \sqrt{n}M_j \varepsilon_N^2 \quad (d)
\]

Combining above results, we conclude that

\[
\sqrt{N} R_{n,k} \lesssim M_j \varepsilon_N + \sqrt{N}M_j \varepsilon_N^2.
\]

and for \(\varepsilon_N = o(N^{-1/4}) \), we have \(\sqrt{N} R_{n,k} = o_p(M_j) \).

Step 4: Auxiliary Results

In this section, we show the auxiliary results (a)-(d) used in the previous steps. We first show (c) as it will also be used to bound other results.

Recall that

\[
(c) : \quad \sup_{\eta \in T_N} E[(\psi_\eta - \psi_{\eta_0})^2] \lesssim M_j^2 \varepsilon_N^2.
\]

54
By definition,

\[
\psi_n - \psi_{\eta_0} = \Delta Y 1 \{ D = 0 \} \frac{f_J(X)}{f_d^0 \cdot g(X)} - \frac{m_J(D)g(X) - 1 \{ D = 0 \} f_J(X)\mathcal{E}_{\Delta Y}(X)}{f_d^0 \cdot g^2(X)} \]

\[
- \Delta Y 1 \{ D = 0 \} \frac{f_J^0(X)}{f_d^0 \cdot g_0(X)} - \frac{m_J(D)g_0(X) - 1 \{ D = 0 \} f_J^0(X)\mathcal{E}_{\Delta Y}^0(X)}{f_d^0 \cdot g_0^2(X)} \]

\[
= \Delta Y 1 \{ D = 0 \} \frac{f_J(X)}{f_d^0 \cdot g(X)} - \frac{m_J(D)g(X) - 1 \{ D = 0 \} f_J(X)\mathcal{E}_{\Delta Y}(X)}{f_d^0 \cdot g^2(X)} \]

\[
- \frac{1 \{ D = 0 \} (f_J(X)\mathcal{E}_{\Delta Y}(X) - f_J^0(X)\mathcal{E}_{\Delta Y}^0(X))}{g(X) g^2(X)} \]

\[
\lesssim C_1(f_J(X) - f_J^0(X)) + C_2 M_J(g(X) - g_0(X)) + C_3 M_J(\mathcal{E}_{\Delta Y}(X) - \mathcal{E}_{\Delta Y}^0(X)) \]

where the last line can be shown using the usual plus-minus trick with C_1, C_2, C_3 being some constants and $M_J = \|m_J\|_\infty$. Then by the definition of T_N and the assumptions on the rate of convergence of the nuisance parameters,

\[
\sup_{\eta \in T_N} E[(\psi_n - \psi_{\eta_0})^2] \lesssim \|f_J - f_J^0\|_{P,2}^2 + M_J^2\|g - g_0\|_{P,2}^2 + M_J^2\|\mathcal{E}_{\Delta Y} - \mathcal{E}_{\Delta Y}^0\|_{P,2}^2 \]

\[
+ M_J\|f_J - f_J^0\|_{P,2}\|g - g_0\|_{P,2} + M_J\|f_J - f_J^0\|_{P,2}\|\mathcal{E}_{\Delta Y} - \mathcal{E}_{\Delta Y}^0\|_{P,2} \]

\[
+ M_J^2\|g - g_0\|_{P,2}\|\mathcal{E}_{\Delta Y} - \mathcal{E}_{\Delta Y}^0\|_{P,2} \]

\[
\lesssim M_J^2 \varepsilon_N^2 \]

This shows (c) with $\varepsilon_N = o(N^{-1/4})$.

Next, we consider (a). We want to show

\[
(a) : \sup_{f \in \mathcal{F}_N, \eta \in T_N} E[|\partial_2^2 \psi_J(Z, \theta_{0J}, f, \eta) - \partial_2^2 \psi_J(Z, \theta_{0J}, f^0_d, \eta_0)|^2] \lesssim \varepsilon_N^2 \]

By definition,

\[
\partial_2^2 \psi_J(Z, \theta_{0J}, f, \eta) = \frac{2}{f^2} (\psi_J(Z, \theta_{0J}, f, \eta) + \theta_{0J}) \]

\[
\partial_3^2 \psi_J(Z, \theta_{0J}, f, \eta) = -\frac{6}{f^2} (\psi_J(Z, \theta_{0J}, f, \eta) + \theta_{0J}). \]

Then using Taylor’s theorem expand around f^0_d, we

\[
\partial_2^2 \psi_J(Z, \theta_{0J}, f, \eta) - \partial_2^2 \psi_J(Z, \theta_{0J}, f^0_d, \eta_0) \]

\[
= \partial_2^2 \psi_J(Z, \theta_{0J}, f^0_d, \eta) - \partial_2^2 \psi_J(Z, \theta_{0J}, f^0_d, \eta_0) + \partial_2^2 \psi_J(Z, \theta_{0J}, f, \eta)(f - f^0_d) \]

\[
55 \]
\[\frac{2}{(f^0_d)^2} (\psi_J(Z, \theta_{0J}, f^0_d, \eta) - \psi_J(Z, \theta_{0J}, f^0_d, \eta_0)) \quad (\star) \]
\[- \frac{6}{f^3} (\psi_J(Z, \theta_{0J}, \bar{f}, \eta) + \theta_{0J})(f - f^0_d) \quad (\star\star) \]

By the assumption, on \(F_N \), \(\bar{f} \) and \(f^0_d \) are bounded away from zero, so that \((\star)\) is the leading term that can be bounded with \((c)\). Moreover, for \(\varepsilon_N = \omega(N^{-1/4}) \), \((\star\star)\) is of smaller order and can be ignored. Therefore we conclude that

\[\sup_{f \in F_N, \eta \in T_N} E[|\partial^2_r \psi_J(Z, \theta_{0J}, f, \eta) - \partial^2_r \psi_J(Z, \theta_{0J}, f^0_d, \eta_0)|^2] \lesssim M^2_f \varepsilon_{N}. \]

Similarly, by definition,

\[\partial_f \psi_J(Z, \theta_{0J}, f^0_d, \eta) - \partial_f \psi_J(Z, \theta_{0J}, f^0_d, \eta_0) \]
\[= - \frac{1}{f^0_d} (\psi_J(Z, \theta_{0J}, f^0_d, \eta) - \psi_J(Z, \theta_{0J}, f^0_d, \eta_0)) \]

and using the same arguments as before, \((b)\) follows from \((a)\) and \((c)\).

Last, we show \((d)\). It suffices to show

\[\sup_{r \in (0, 1), \eta \in T_N} |\partial^2_r \psi_J(\eta_0 + r(\hat{\eta}_k - \eta_0))| \lesssim M_f \varepsilon_{N}. \]

By definition,

\[\psi_J(\eta_0 + r(\hat{\eta}_k - \eta_0)) \]
\[= \Delta Y \mathbf{1}\{D = 0\} (f^0_d + r(f_J - f^0_J)) \]
\[- \frac{\Delta f}{f^0_d} (g_0 + r(g - g_0)) - \theta_{0J} \]
\[+ \frac{1}{f^0_d} \frac{\Delta g}{g_0 + r(g - g_0)} - \frac{1}{(g_0 + r(g - g_0))^2} \frac{\Delta \psi_J}{\Delta Y} - \frac{\psi_J}{\Delta Y} \]

and we take the second order partial derivatives wrt \(r \) term by term. For simplicity, we omit the derivations, and we have

\[\partial^2_r \psi_J(\eta_0 + r(\hat{\eta}_k - \eta_0)) \]
\[\asy \times C_1 \Delta f \Delta g + C_2(\Delta g)^2 + C_3 M_f \Delta \varepsilon \Delta g + C_4 M_J (\Delta g)^2 + C_5 \Delta f \Delta \varepsilon + C_6 \Delta \varepsilon \Delta g \]

where \(\Delta f := f_J - f^0_J, \Delta g := g - g_0, \) and \(\Delta \varepsilon := \varepsilon_{\Delta Y} - \varepsilon^0_{\Delta Y} \). Then by triangle inequality,
Cauchy-Schwarz, and the assumption on the space of nuisance parameters T_N, we conclude
\[
\partial_r^2 E[\psi_J(\eta_0 + r(\hat{\eta}_k - \eta_0))] \lesssim \|f_J - f_J^0\|_{P,2} \|g - g_0\|_{P,2} + \|f_J - f_J^0\|_{P,2} \|\mathcal{E}_\Delta Y - \mathcal{E}_\Delta Y^0\|_{P,2} + M_J \|g - g_0\|_{P,2}^2 \\
\lesssim M_J \varepsilon_N.
\]

Part III: Conclusion

Combining the results in Part I and Part II, we have
\[
\hat{\text{ATT}}(d) - \text{ATT}(d) = \frac{1}{N} \sum_{i=1}^{N} K_h(D_i - d) \Delta Y_i - E[(K_h(D - d) \Delta Y)] - \frac{E[\Delta Y | D = d]}{f_d^0} \sum_{i=1}^{N} (K_h(D_i - d) - E[K_h(D - d)]) \\
- \frac{1}{N} \sum_{i=1}^{N} \psi_J(Z_i, \theta_0, f_d^0, \eta_0) \\
- \frac{1}{N} \sum_{i=1}^{N} S_J^0(K_h(D_i - d) - E[K_h(D_i - d)]) \\
+ o_p((Nh)^{-1/2}) + o_p(N^{-1/2} M_J) \\
- \theta_0 - \theta_0 J
\]

where each of (1) – (4) is an average of i.i.d zero-mean terms with the variance growing either with kernel bandwidth h or the series term J.

Since J and h grows with N, we need a triangular array CLT to establish the asymptotic results. The Lyapunov conditions are easy to verify for the kernel terms (1),(2),(4). Moreover, by assumption, $E[(m_J^0(D))^2] \asymp \tilde{M}_J^2$ and $E[|m_J^0(D)|^3] \asymp \tilde{M}_J^3$, and using boundedness assumptions on the nuisance parameters, we have $E[\psi_J^2] \asymp \tilde{M}_J^2$ and $E[\psi_J^3] \asymp \tilde{M}_J^3$, then the Lyapunov condition is also satisfied for (3). Then by CLT, together with assumptions 4.7 and 4.8, we have
\[
\frac{\hat{\text{ATT}}(d) - \text{ATT}(d)}{\sigma_N/\sqrt{N}} \xrightarrow{d} N(0,1)
\]

with σ_N defined by
\[
\sigma_N^2 := E\left(\left(\frac{1}{f_d^0}(K_h(D - d) \Delta Y - E[K_h(D - d) \Delta Y])\right)^2\right)
\]
\[- \psi_J + \left(\frac{\theta_J}{f_d} - \mathcal{E}_{\lambda Y}^d \right) (K_h(D - d) - E[K_h(D - d)])^2 \]

where we have used the fact that \(S_f^0 = -\theta_J/f_d \).

\section*{B Supplementary Material}

First, we extend our results to the repeated cross sections setting.

\textbf{Algorithm B.1 (CDID Estimator).} Let \(\{I_k\}_{k=1}^K \) denote a random partition of a random sample \(\{Z_i\}_{i=1}^N \), each with equal size \(n = N/K \), and for each \(k \in \{1, \cdots, K\} \), let \(I_k^c := N \setminus I_k \) denote the complement.

\begin{itemize}
 \item \textbf{(Repeated Cross Sections)} For each \(k \), construct
 \[
 \hat{\text{ATT}}(d)_k := \frac{1}{n} \sum_{i \in I_k} \hat{\mathcal{E}}^d_{\lambda Y,k} - \frac{T_i - \hat{\lambda}_k}{\lambda_k (1 - \hat{\lambda}_k)} Y_i 1\{D_i = 0\} \frac{\hat{f}_{J,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k(X_i)} - \frac{m^d_{f}(D_i) \hat{g}_k(X_i) - 1\{D_i = 0\} \hat{f}_{J,k}(d|X_i) \hat{\mathcal{E}}_{\lambda Y,k}(X_i)}{\hat{f}_{d,k} \cdot \hat{g}^2_k(X_i)}
 \]
 where \(\hat{f}_{d,k}, \hat{\mathcal{E}}^d_{\lambda Y,k}, \hat{f}_{J,k}, \hat{g}_k, \hat{\mathcal{E}}_{\lambda Y,k} \) are the estimators of \(f_d, \mathcal{E}_{\lambda Y|D = d}, f_J(d|X), g(X) \) and \(\mathcal{E}_{\lambda Y}(X) \) respectively using the rest of the sample \(I_k^c \). In particular, \(\hat{f}_{d,k}, \hat{\mathcal{E}}^d_{\lambda Y,k}, \hat{f}_{J,k}, \hat{\mathcal{E}}_{\lambda Y,k} \) are kernel estimators, \(\hat{g}_k, \hat{\mathcal{E}}_{\lambda Y,k} \) are estimated using ML methods (e.g. deep neural networks), and each term in \(\hat{f}_{J,k} \) is estimated estimated using ML for a large \(J \).
 \item Average through the \(K \) estimators to obtain the final estimator
 \[
 \hat{\text{ATT}}(d) := \frac{1}{K} \sum_{k=1}^K \hat{\text{ATT}}(d)_k.
 \]
\end{itemize}

Analogous to the repeated outcomes setting, we make the following assumptions.

\textbf{Assumption B.1 (Bounds).}

\begin{enumerate}
 \item For some constants \(0 < c < 1 \) and \(0 < C < \infty \), \(f_d > c, c < \lambda < 1 - c, |E[{\mathcal{E}_{\lambda Y|D = d}}]| < C \), and \(|\mathcal{E}_{\lambda Y}(X)| < C \) almost surely;
 \item For some constants \(0 < \kappa < \frac{1}{2} \) and for all \(J \geq 1 \), \(\kappa < f_J(d|X), g(X) < 1 - \kappa \) almost surely;
\end{enumerate}
(iii) \(f_d \) and \(E[\frac{\lambda-Y}{\lambda(1-\lambda)}Y|D=d] \) are twice continuously differentiable at \(D=d \in (d_L, d_H) \) and have bounded second derivative.

Assumption B.2 (Rates).

(i) kernel bandwidth satisfies \(Nh \to \infty \) and \(\sqrt{Nh^5} = o(1) \) and
\[
\frac{\sqrt{N}}{\max\{M_J, h^{-\frac{1}{2}}\}} E\left[\sum_{j=J+1}^{\infty} E[\phi_j(D)1\{D > 0\}|X]\phi_j(d) \right] = o(1);
\]

(ii) \(M_J/\sqrt{N} = o(1) \);

(iii) with probability tending to 1, \(\|\hat{f}_J - f_J(d|X)\|_{P,2} \leq M_J \varepsilon_N \), \(\|\hat{g}(X) - g(X)\|_{P,2} \leq \varepsilon_N \), \(\|\hat{E}_{XY}(X) - E_{XY}(X)\|_{P,2} \leq \varepsilon_N \);

(iv) with probability tending to 1, \(\|\hat{E}_{XY}(X)\|_{P,\infty} < C \), \(\kappa < \|\hat{f}_J(X)\|_{P,\infty} < 1 - \kappa \), and \(\kappa < \|\hat{g}(X)\|_{P,\infty} < 1 - \kappa \).

Theorem B.1 (Repeated Cross Sections). Suppose assumptions 4.2, 4.3, 4.4, 4.5, 4.6, B.1, and B.2 hold. Then for \(\varepsilon_N = o(N^{-1/4}) \),
\[
\frac{\hat{ATT}(d) - ATT(d)}{\sigma_N/\sqrt{N}} \to^d N(0,1)
\]
where
\[
\sigma_N^2 := E\left[\left(\frac{1}{f_d}(K_h(D-d)Y^\lambda - E[K_h(D-d)Y^\lambda]) - \psi_J + \left(\frac{\theta_J}{f_d} - \frac{\hat{E}_{XY}^d}{f_d} \right)(K_h(D-d) - E[K_h(D-d)]) \right)^2 \right].
\]

and \(\psi_J \) is defined as in (14) and \(Y^\lambda := \frac{T-\lambda}{\lambda(1-\lambda)}Y \).

Similarly as before, we construct
\[
\hat{\sigma}_N^2 := \frac{1}{K} \sum_{k=1}^{K} E_{n,k}\left[\left(\frac{1}{f_{d,k}}(K_h(D-d)Y^\lambda_k - E_{n^c,k}[K_h(D-d)Y^\lambda_k]) - \psi_J(Z, \hat{\theta}_J, \hat{\lambda}_k, \hat{f}_{d,k}, \hat{\eta}_k) \right. \left. + \left(\frac{\theta_J}{f_{d,k}} - \frac{\hat{E}_{XY}^d}{f_{d,k}} \right)(K_h(D-d) - E_{n^c,k}[K_h(D-d)]) \right)^2 \right]
\]
where

\[\hat{\theta}_J := \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} \frac{T_i - \hat{\lambda}_k}{\hat{\lambda}_k(1 - \hat{\lambda}_k)} \mathbf{1}(\mathcal{I}_i = 0) \frac{\hat{f}_{\lambda,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k(X_i)} + \frac{m^d(D_i)\hat{g}_k(X_i) - \mathbf{1}(\mathcal{I}_i = 0)\hat{f}_{\lambda,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k^2(X_i)} \]

\[Y^{\hat{\lambda}_k} := \frac{T - \hat{\lambda}_k}{\hat{\lambda}_k(1 - \hat{\lambda}_k)} Y, \] and \(E_{n,c,k} \) denotes the empirical average using the auxiliary sample \(I^c_k \).

Then, the \(1 - \alpha \) confidence interval can be constructed as \([\hat{\text{ATT}}(d) - z_{1-\alpha/2} \hat{\sigma}_N / \sqrt{N}, \hat{\text{ATT}}(d) + z_{1-\alpha/2} \hat{\sigma}_N / \sqrt{N}]\) where \(z_{1-\alpha/2} \) denotes the \(1 - \alpha/2 \) quantile of the standard normal random variable.

Alternatively, one can use a multiplier bootstrap type of procedure to construct the confidence interval for our estimator. Specifically, let \(\{\xi_i\}_{i=1}^N \) be an i.i.d. sequence of sub-exponential random variables independent of \(\{Y_i, T_i, D_i, X_i\}_{i=1}^N \) such that \(E[\xi_i] = Var[\xi_i^2] = 1 \). Then for each \(b = 1, \cdots, B \), we draw such a sequence \(\{\xi_i\}_{i=1}^N \) and construct

\[\hat{\text{ATT}}(d)^*_b := \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} \xi_i \left(\hat{\mathcal{E}}_{\lambda,Y,k}^d - \frac{T_i - \hat{\lambda}_k}{\hat{\lambda}_k(1 - \hat{\lambda}_k)} \mathbf{1}(\mathcal{I}_i = 0) \frac{\hat{f}_{\lambda,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k(X_i)} - \frac{m^d(D_i)\hat{g}_k(X_i) - \mathbf{1}(\mathcal{I}_i = 0)\hat{f}_{\lambda,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k^2(X_i)} \right) \]

\[(35) \]

Let \(\hat{c}_\alpha \) be the \(\alpha \)'s quantile of \(\{\hat{\text{ATT}}(d)^*_b - \hat{\text{ATT}}(d)\}_{b=1}^B \), and we construct the confidence interval as \([\hat{\text{ATT}}(d) - \hat{c}_1 - \alpha/2, \hat{\text{ATT}}(d) - \hat{c}_\alpha/2]\).

B.1 Proof of Theorem B.1 (Repeated Cross Sections)

The proof for the repeated cross sections case follows very closely to that of the repeated outcomes case, with only minor modifications due to the presence of a new parameter \(\lambda = P(T = 1) \), which can be estimated at parametric rate.

Let \(T_N \) be the set of square integrable \(\eta := (f_j, g(X), \mathcal{E}_{\lambda,Y}(X)) \) such that assumption \(B.1 \) holds. Let \(F_N, E_N \) be the set of \(f > 0 \) and \(\mathcal{E}_d^{\lambda,Y} \) such that \(|f - f_d^0| \leq (Nh)^{-1/2} \) and \(|\mathcal{E}_{\lambda,Y} - \mathcal{E}_{d,Y,0} | \leq (Nh)^{-1/2} \). Then assumption \(B.2 \) implies that, with probability tending to \(1, \hat{\eta}_k \in T_N, \hat{f}_{d,k} \in F_N, \hat{\lambda}_k \in P_N, \) and \(\hat{\mathcal{E}}_{\lambda,Y}^{d} \in E_N \).
First, recall that for \(1 \leq k \leq K\),

\[
ATT(d)_k := \frac{1}{n} \sum_{i \in I_k} \hat{\epsilon}^{d}_{\lambda Y,k} - \frac{T_i - \hat{\lambda}_k}{\hat{\lambda}_k(1 - \hat{\lambda}_k)} Y_i 1\{D_i = 0\} \frac{\hat{f}_{I,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k(X_i)}
\]

\[
- m^d_j(D_i) \hat{g}_k(X_i) 1\{D_i = 0\} \hat{f}_{j,k}(d|X_i) \hat{\epsilon}^{\lambda Y,k}(X_i)
\]

We first focus on (1), and then on (2) and (3).

Part I: Kernel Regression Results

We first consider the (1), \(\hat{\epsilon}^{d}_{\lambda Y,k} := \hat{E}[\frac{T - \lambda}{\lambda(1 - \lambda)} Y|D = d]\), which is estimated using kernel (and the density \(f_d\) is estimated using the same bandwidth \(h\)):

\[
\hat{\epsilon}^{d}_{\lambda Y,k} = \frac{1}{n} \sum_{i \in I_k} K_h(D_i - d) \frac{T_i - \hat{\lambda}_k}{\hat{\lambda}_k(1 - \hat{\lambda}_k)} Y_i
\]

where

\[
\hat{f}_{d,k} = \frac{1}{n} \sum_{i \in I_k} K_h(D_i - d); \quad \hat{\lambda}_k = \frac{1}{n} \sum_{i \in I_k} T_i.
\]

For notation simplicity, denote \(Y^\lambda := \frac{T - \lambda}{\lambda(1 - \lambda)} Y\). Then using the similar arguments as in the repeated outcomes case, we have

\[
\frac{1}{K} \sum_{i = 1}^K \hat{\epsilon}^{d}_{\lambda Y,k} - \epsilon^{d}_{\lambda Y} = \frac{1}{N} \sum_{i = 1}^N K_h(D_i - d) Y_i^\lambda - E[(K_h(D - d)Y^\lambda)]
\]

\[
- \frac{E[Y^\lambda|D = d]}{\hat{f}_d} \frac{1}{N} \sum_{i = 1}^N K_h(D_i - d) - E[K_h(D - d)] + o_p((Nh)^{-1/2}).
\]

Part II: Orthogonal Scores

Let \(\hat{\theta}_J\) be defined as

\[
\hat{\theta}_J := \frac{1}{K} \sum_{k = 1}^K \frac{1}{n} \sum_{i \in I_k} T_i - \hat{\lambda}_k Y_i 1\{D_i = 1\} \frac{\hat{f}_{I,k}(d|X_i)}{\hat{f}_{d,k} \cdot \hat{g}_k(X_i)}
\]
\[+ \frac{m^d_j(D_i) \hat{g}_k(X_i) - 1[D_i = 0] \hat{f}_{d,k}(d|X_i) \hat{\psi}_{\lambda,Y,k}(X_i)}{f_{d,k} \cdot \hat{g}_k^2(X_i)}. \]

Then by definition,

\[\sqrt{N}(\hat{\theta}_J - \theta_{0,j}) = \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\psi_J(Z_i, \theta_{0,j}, \lambda_k, \hat{f}_{d,k}, \eta_k)] \] (36)

where \(\psi_J \) is defined as in (14), and \(E_{n,k}(f) = \frac{1}{n} \sum_{i \in I_k} f(Z_i) \) denotes the empirical average. Then by multivariate version of Taylor’s theorem,

\[\sqrt{N}(\hat{\theta}_J - \theta_{0,j}) = \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\psi_J(Z, \theta_{0,j}, \lambda_0, f_{d}, \eta_k)] \] (37)

\[+ \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\partial_{\lambda} \psi_J(Z, \theta_{0,j}, \lambda_0, f_{d}, \eta_k)](\lambda_k - \lambda_0) \] (38)

\[+ \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\partial_{f} \psi_J(Z, \theta_{0,j}, \lambda_k, f_{d,k}, \eta_k)](\hat{f}_{d,k} - f_{d}) \] (39)

\[+ \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\partial_{f} \psi_J(Z, \theta_{0,j}, \lambda_k, \tilde{f}_k, \eta_k)](\tilde{f}_k - f_{d_{k}})^2 \] (40)

\[+ \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\partial_{f} \psi_J(Z, \theta_{0,j}, \lambda_k, \tilde{f}_k, \eta_k)](\hat{f}_{d,k} - f_{d}) \] (41)

\[+ \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\partial_{f_{d,k}} \psi_J(Z, \theta_{0,j}, \lambda_k, \tilde{f}_k, \eta_k)] \] (42)

where \(\lambda_k \in (\lambda_0, \tilde{\lambda}_k) \) and \(\tilde{f}_k \in (f_{d}, \hat{f}_{d,k}) \). All the second order terms (40)-(42) can be shown to be \(o_p(1) \). The first order term (39) can be analyzed in the same way as the repeat outcomes case. Moreover, since \(\tilde{\lambda}_k = E_{n,k}T_i \) converges at parametric rate while the kernel estimator \(\hat{f}_{d,k} \) converges at slower rate, the influence of (38) on the asymptotic variance is negligible. The main term (37) can be analyzed in the same way as in the repeated outcomes case.

Step 1: Second Order Terms

First, we consider (40). By triangle inequality, we have

\[\frac{|E_{n,k}[\partial_{f}^2 \psi_J(Z, \theta_{0,j}, \lambda_k, \tilde{f}_k, \eta_k)] - E[\partial_{f}^2 \psi_J(Z, \theta_{0,j}, \lambda_0, f_{d}, \eta_0)]|}{J_{1k}} \]

\[\leq \frac{|E_{n,k}[\partial_{f}^2 \psi_J(Z, \theta_{0,j}, \lambda_k, \tilde{f}_k, \eta_k)] - E_{n,k}[\partial_{f}^2 \psi_J(Z, \theta_{0,j}, \lambda_0, f_{d}, \eta_0)]|}{J_{1k}} \]

62
To bound J_{2k}, since $0 < c < \lambda_0 < 1 - c$ and the score ψ is bounded by M_J, we have

$$\partial^2_{\lambda} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0) \lesssim M_J$$

and hence

$$E[J_{2k}^2] \leq \frac{1}{N} E[(\partial^2_{\lambda} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0))^2] \lesssim M_J^2/N.$$

Then by Markov’s inequality, we have $J_{2k} \leq O_p(M_J/\sqrt{N})$. For J_{1k}, note that

$$E[J_{1k}^2 | I_k] = E[|E_n[k[\partial^2_{\lambda} \psi_J(Z, \theta_{0J}, \hat{\lambda}_k, \hat{f}_k, \hat{\eta}_k)] - E_n[k[\partial^2_{\lambda} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0)]|^2 | I_k]$$

$$\leq \sup_{\lambda \in P_N, f \in F_N, \eta \in T_N} E[|\partial^2_{\lambda} \psi_J(Z, \theta_{0J}, \lambda, f, \eta) - \partial^2_{\lambda} \psi_J(Z, \theta_{0J}, \lambda, f^0_d, \eta_0)|^2 | I_k]$$

$$\lesssim M_J^2/\sqrt{N}, \quad (a)$$

where the first equation holds by definition, the second line holds by Cauchy-Schwarz and the third line holds by the construction that all the parameters are estimated using auxiliary sample I_k. Then by conditional Markov’s inequality, $(\hat{\lambda}_k - \lambda)^2 \leq O_p(N^{-1})$, and assumption B.1, we conclude that $(40) = o_p(1)$. We will show (a) at the end of this section.

Term (41) is bounded in the same way as the repeated outcomes case. By triangle inequality, we have

$$|E_n[k[\partial^2_{J} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0)] - E[\partial^2_{J} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0)]|$$

$$\leq |E_n[k[\partial^2_{J} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0)] - E_n[k[\partial^2_{J} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0)]|$$

$$+ |E_n[k[\partial^2_{J} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0)] - E[\partial^2_{J} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0)]|.$$

To bound J_{4k}, note that since f^0_d is bounded away from zero and the score ψ is bounded by M_J,

$$\partial^2_{J} \psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0) = \frac{2}{(f^0_d)^2} (\psi_J(Z, \theta_{0J}, \lambda_0, f^0_d, \eta_0) + \theta_{0J}) \lesssim M_J$$
which implies that

\[E[J_{4k}^2] \leq \frac{1}{N} E[(\partial_f^2 \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0))^2] \lesssim M_J^2/N \]

and by Markov’s inequality, we have \(J_{4k} \leq O_p(M_J/\sqrt{N}) \). For \(J_{3k} \), we have

\[
E[J_{3k}^2|I_k^c] = E[\|E_{n,k}[\partial_f^2 \psi_j(Z, \theta_{0j}, \lambda_k, f_k, \eta_k)] - E_{n,k}[\partial_f^2 \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)]\|I_k^c] \\
\leq \sup_{\lambda \in \mathbb{P}_N, f \in F_N, \eta \in T_N} E[\|\partial_f^2 \psi_j(Z, \theta_{0j}, \lambda, f, \eta) - \partial_f^2 \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)\|^2|I_k^c] \\
\leq \sup_{\lambda \in \mathbb{P}_N, f \in F_N, \eta \in T_N} E[\|\partial_f^2 \psi_j(Z, \theta_{0j}, \lambda, f, \eta) - \partial_f^2 \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)\|^2] \\
\lesssim M_J^2 \varepsilon_N^2
\]

(b)

Then by conditional Markov’s inequality, \((f_{d,k} - f_d^0)^2 \leq O_p((Nh)^{-1})\), and assumption B.1, we conclude that \((41) = o_p(1)\). We postpone the proof of (b) to the end of this section.

Finally, we can bound (42) using similar arguments as those for (40) and (41). To avoid repetitiveness, we only highlight the difference. In particular, we need

\[
\sup_{\lambda \in \mathbb{P}_N, f \in F_N, \eta \in T_N} E[|\partial_\lambda \partial_f \psi_j(Z, \theta_{0j}, \lambda_k, f_k, \eta_k) - \partial_\lambda \partial_f \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)|^2] \lesssim M_J^2 \varepsilon_N^2
\]

(c)

and using conditional Markov’s inequality, \((f_{d,k} - f_d)(\lambda_k - \lambda_0) \leq O_p(N^{-1}h^{-1/2})\), and assumption B.1, we conclude that \((42) = o_p(1)\). Claim (c) will be shown later. This shows that all the second order terms are negligible in the asymptotic distribution.

Step 2: First Order Terms

We first consider (38). By triangle inequality, we have

\[
\begin{align*}
|E_{n,k}[\partial_\lambda \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)] - E[\partial_\lambda \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)]| \\
\leq |E_{n,k}[\partial_\lambda \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_k)] - E_{n,k}[\partial_\lambda \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)]| \\
+ |E_{n,k}[\partial_\lambda \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)] - E[\partial_\lambda \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0)]|
\end{align*}
\]

To bound \(J_{6k} \), note that since \(\lambda_0 \) is bounded away from zero and the score \(\psi \) is bounded by \(M_J \),

\[\partial_\lambda \psi_j(Z, \theta_{0j}, \lambda_0, f_d^0, \eta_0) \lesssim M_J \]

64
which implies that
\[E[J_{6k}^2] \leq \frac{1}{N} E[(\partial_\lambda \psi J(Z, \theta_0 J, \lambda_0, f^0_d, \eta_0))^2] \lesssim \frac{M^2}{N} \]
and by Markov’s inequality, we have \(J_{6k} \leq O_p(M_J/\sqrt{N}) \). With the assumption that \(M_J/\sqrt{N} = o(1) \), we have \(J_{6k} = o_p(1) \).

On the other hand, for \(J_{5k} \), note that
\[\mathbb{E}[J_{5k}^2 | I_k^c] = \mathbb{E}[E_{n,k}[\partial_\lambda \psi J(Z, \theta_0 J, \lambda_0, f^0_d, \hat{\eta}_k)] - E_{n,k}[\partial_\lambda \psi J(Z, \theta_0 J, \lambda_0, f^0_d, \eta_0)]^2 | I_k^c] \leq \sup_{\eta \in I^c_N} \mathbb{E}[|\partial_\lambda \psi J(Z, \theta_0 J, \lambda_0, f^0_d, \eta) - \partial_\lambda \psi J(Z, \theta_0 J, \lambda_0, f^0_d, \eta_0)|^2 | I_k^c] \lesssim M^2 \varepsilon^2 N \]
where the first equation holds by definition, the second line holds by Cauchy-Schwarz and the third line holds by the construction that all the parameters are estimated using auxiliary sample \(I_k^c \). Then we conclude with conditional Markov’s inequality that \(J_{5k} = o_p(1) \).

Therefore,
\[E_{n,k}[\partial_\lambda \psi J(Z, \theta_0 J, \lambda_0, f^0_d, \hat{\eta}_k)] \rightarrow_p E[\partial_\lambda \psi J(Z, \theta_0 J, \lambda_0, f^0_d, \eta_0)] := S^0_\lambda \]
Note that \((\hat{\lambda}_k - \lambda_0) = O_p(N^{-1/2}) \), we can rewrite (38) as
\[(38) = \sqrt{N} \frac{1}{K} \sum_{k=1}^K E_{n,k}[\partial_\lambda \psi J(Z, \theta_0 J, \lambda_0, f^0_d, \hat{\eta}_k)](\hat{\lambda}_k - \lambda_0) \]
\[= \sqrt{N} \frac{1}{K} \sum_{k=1}^K S^0_\lambda(\hat{\lambda}_k - \lambda_0) + o_p(1) \]
\[= \sqrt{N} \frac{1}{N} \sum_{i=1}^N S^0_\lambda(T_i - \lambda_0) + o_p(1) \]
where the last equality holds by the definition that \(\hat{\lambda}_k - \lambda_0 = (N - n)^{-1} \sum_{i \in T^c_k} T_i - \lambda_0 \) and the fact that \(K^{-1} \sum_{k=1}^K (\hat{\lambda}_k - \lambda_0) = \frac{1}{N} \sum_{i=1}^N (T_i - \lambda_0) \). We remark that, since \(S^0_\lambda = E[\partial_\lambda \psi^0_j] \) is bounded by a constant and \(\hat{\lambda} \) converges at parametric rate, (38) vanishes when scaled by the square-root of the asymptotic variance.

Term (39) will be bounded using the same argument as in the repeated outcomes setting.
First, by triangle inequality

\[
\begin{align*}
|E_{n,k}[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \hat{\eta}_k)] - E[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0)]| &\leq |E_{n,k}[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \hat{\eta}_k)] - E_{n,k}[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0)]| \\
&+ |E_{n,k}[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0)] - E[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0)]|.
\end{align*}
\]

We first bound \(J_{8k} \). Note that since \(f_d^0 \) is bounded away from zero and the score \(\psi \) is bounded by \(M_f \), we have

\[
\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0) = -\frac{1}{f_d^0} (\psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0) + \theta_{0,j}) \lesssim M_f
\]

which implies that

\[
E[J_{8k}^2] \leq \frac{1}{N} E[(\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0))^2] \lesssim M_f^2 / N
\]

and by Markov’s inequality, we have \(J_{8k} \leq O_p(M_f/\sqrt{N}) \). With the assumption that \(M_f/\sqrt{N} = o(1) \), we have \(J_{8k} = o_p(1) \).

Second, to bound \(J_{7k} \), note that

\[
E[J_{7k}^2|I_k^c] = E[|E_{n,k}[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \hat{\eta}_k)] - E_{n,k}[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0)]|^2|I_k^c] \\
\leq \sup_{\eta \in T_N} E[|\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta) - \partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0)|^2|I_k^c] \\
\leq \sup_{\eta \in T_N} E[|\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta) - \partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0)|^2] \\
\lesssim M_f^2 \varepsilon_N^2
eq (e)
\]

where the first equation holds by definition, the second line holds by Cauchy-Schwarz and the third line holds by the construction that all the parameters are estimated using auxiliary sample \(I_k^c \). Then we conclude with the conditional Markov’s inequality that \(J_{7k} = o_p(1) \). Therefore,

\[
E_{n,k}[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \hat{\eta}_k)] \rightarrow^p E[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \eta_0)] := S_j^0
\]

Note that under the assumption, \((\hat{f}_d - f_d^0) = O_p((Nh)^{-1/2}) \), we can rewrite (39) as

\[
(39) = \sqrt{N} \frac{1}{K} \sum_{k=1}^K E_{n,k}[\partial f_j \psi_j(Z, \theta_{0,j}, \lambda_0, f_d^0, \hat{\eta}_k)](\hat{f}_{d,k} - f_d^0)
\]

66
\[= \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} S^0_d(\hat{f}_{d,k} - f^0_d) + o_p(h^{-1/2})\]
\[= \sqrt{N} \frac{1}{N} \sum_{i=1}^{N} S^0_d(K_h(D_i - d) - E[K_h(D - d)]) + o_p(h^{-1/2})\]

where the last equality holds by the definition that \(\hat{f}_{d,k} - f^0_d = (N - n)^{-1} \sum_{i \in I_k^c} K_h(D_i - d) - E[K_h(D - d)] + O(h^2) \), the under-smoothing assumption that \(\sqrt{Nh^2} \leq O(1) \), and the fact that \(K^{-1} \sum_{k=1}^{K} (\hat{f}_{d,k} - E[K_h(D - d)]) = \frac{1}{N} \sum_{i=1}^{N} (K_h(D_i - d) - E[K_h(D - d)]) \). This term will contribute to the asymptotic variance.

Step 3: “Neyman Term”

Now we consider (37), which can be shown using the same argument as the repeated outcomes case.

\[\sqrt{N} \frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\psi_J(Z, \theta_{0,J}, \lambda_0, f^0_d, \hat{\eta}_k)]\]
\[= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi_J(Z_i, \theta_{0,J}, \lambda_0, f^0_d, \eta_0)\]
\[+ \sqrt{N} \frac{1}{K} \sum_{k=1}^{K} (E_{n,k}[\psi_J(Z, \theta_{0,J}, \lambda_0, f^0_d, \hat{\eta}_k)] - E_{n,k}[\psi_J(Z, \theta_{0,J}, \lambda_0, f^0_d, \eta_0)])\]

Since \(K \) is fixed, \(n = O(N) \), it suffices to show that \(R_{n,k} = o_p(N^{-1/2}M_J) \), so it vanishes when scaled by the (square root of) asymptotic variance. Note that by triangle inequality, we have the following decomposition

\[|R_{n,k}| \leq \frac{R_{1k} + R_{2k}}{\sqrt{n}}\]

where
\[R_{1k} := |G_{nk}[\psi_J(Z, \theta_{0,J}, \lambda_0, f^0_d, \hat{\eta}_k)] - G_{nk}[\psi_J(Z, \theta_{0,J}, \lambda_0, f^0_d, \eta_0)]|\]

with \(G_{nk}(f) = \sqrt{n}(P_n - P)(f) \) denote the empirical process, and with some abuse of notation, it will also be used to denote conditional version of the empirical process conditioning on the auxiliary sample \(I^c_k \). Moreover,
\[R_{2k} := \sqrt{n}|E[\psi_J(Z, \theta_{0,J}, \lambda_0, f^0_d, \hat{\eta}_k)|I^c_k] - E[\psi_J(Z, \theta_{0,J}, \lambda_0, f^0_d, \eta_0)]|\]

For simplicity, let’s suppress other arguments in \(\psi \) and denote \(\psi^d_{\eta} := \psi_J(Z, \theta_{0,J}, \lambda_0, f^0_d, \eta) \).
First, we consider \(R_{1k} \), in which
\[
G_{nk}\psi_{\hat{\eta}_k} - G_{nk}\psi_{\eta_0} = \sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \psi_{\hat{\eta}_k}^i - \psi_{\eta_0}^i - E[\psi_{\hat{\eta}_k}^i | I^c_k] - E[\psi_{\eta_0}^i | I^c_k] := \Delta_{ik}
\]
In particular, it can be shown that \(E[\Delta_{ik}\Delta_{jk}] = 0 \) for all \(i \neq j \) using the i.i.d. assumption of the data and that the nuisance parameter \(\hat{\eta}_k \) is estimated using the auxiliary sample. Then, we have
\[
E[R_{2k}^2 | I^c_k] \leq E[\Delta_{ik}^2 | I^c_k] \\
\leq E[(\psi_{\hat{\eta}_k}^i - \psi_{\eta_0}^i)^2 | I^c_k] \\
\leq \sup_{\eta \in \mathcal{T}_N} E[(\psi_{\eta}^i - \psi_{\eta_0}^i)^2 | I^c_k] \\
\leq \sup_{\eta \in \mathcal{T}_N} E[(\psi_{\eta}^i - \psi_{\eta_0}^i)^2] \\
\lesssim M_J^2 \varepsilon_N^2 (f)
\]
and using the conditional Markov’s inequality, we conclude that \(R_{1k} = o_p(M_J) \). Now we bound \(R_{2k} \). Note that by definition of the score, \(E[\psi_J(Z, \theta_{0J}, \lambda_0, f_0^d, \eta_0)] = 0 \), so it suffices to bound \(E[\psi_J(Z, \theta_{0J}, \lambda_0, f_0^d, \hat{\eta}_k)|I^c_k] \). Suppressing other arguments in the score, define
\[
h_k(r) := E[\psi_J(\eta_0 + r(\hat{\eta}_k - \eta_0)) | I^c_k]
\]
where by definition \(h_k(0) = E[\psi_J(\eta_0)|I^c_k] = 0 \) and \(h_k(1) = E[\psi_J(\hat{\eta}_k)|I^c_k] \). Use Taylor’s theorem, expand \(h_k(1) \) around 0, we have
\[
h_k(1) = h_k(0) + h'_k(0) + \frac{1}{2} h''_k(\bar{r}), \quad \bar{r} \in (0, 1).
\]
Note that, by Neyman orthogonality,
\[
h'_k(0) = \partial_{\eta} E[\psi_J(\eta_0)][\hat{\eta}_k - \eta_0] = 0
\]
and use that fact that \(h_k(0) = 0 \), we have
\[
R_{2k} = \sqrt{n}|h_k(1)| = \sqrt{n}|h''_k(\bar{r})| \\
\leq \sup_{r \in (0, 1), \eta \in \mathcal{T}_N} \sqrt{n} |\partial_{\eta}^2 E[\psi_J(\eta_0 + r(\hat{\eta}_k - \eta_0))]| \\
\lesssim \sqrt{n} M_J \varepsilon_N^2 (g)
\]
Combining above results, we conclude that

\[\sqrt{N} R_{n,k} \lesssim M J \varepsilon N + \sqrt{N} M J \varepsilon^2 N. \]

and for \(\varepsilon_N = o(N^{-1/4}) \), we have \(\sqrt{N} R_{n,k} = o_p(M J) \).

Step 4: Auxiliary Results

In this section, we show the auxiliary results (a)-(g) used in the previous steps. Note that replacing \(\Delta Y \) with \(\frac{T-\lambda}{\lambda(1-\lambda)} Y \), we can show claims (b),(e),(f),(g) using the same arguments as (a),(b),(c),(d) respectively in the repeated outcomes case. Hence it remains to show (a), (c), and (d).

First, recall that

\[
(a) : \sup_{\lambda \in \mathcal{P}_N, f \in \mathcal{F}_N, \eta \in \mathcal{T}_N} E[|\partial^2_{\lambda^2} \psi_J(Z, \theta_0, \lambda, f, \eta)|^2] \lesssim M J^2 \varepsilon_n^2.
\]

In particular,

\[
\partial^2_{\lambda^2} \psi_J(\lambda, f_d, \eta) = \frac{\partial^2}{\partial \lambda^2} \left(\frac{T - \lambda}{\lambda(1 - \lambda)} \right) 1\{D = 0\} \frac{f_J(d \mid X)}{f_d \cdot g(X)}.
\]

Then by Taylor’s theorem,

\[
\partial^2_{\lambda^2} \psi_J(\lambda, f_d, \eta) - \partial^2_{\lambda^2} \psi_J(\lambda_0, f_0^d, \eta_0) = \partial^2_{\lambda^2} \psi_J(\lambda_0, f_0^d, \eta) - \partial^2_{\lambda^2} \psi_J(\lambda_0, f_0^d, \eta_0) \quad (*)
\]

\[
+ \partial^2_{\lambda^2} \partial_f \psi_J(\bar{\lambda}, \bar{f}_d, \eta)(f_d - f_0^d) \quad (**) \]

\[
+ \partial^3_{\lambda^2} \psi_J(\bar{\lambda}, \bar{f}_d, \eta)(\lambda - \lambda_0) \quad (***)
\]

where \(\bar{\lambda} \in (\lambda, \lambda_0) \) and \(\bar{f} \in (f_d, f_0^d) \). For the first term \((*)\),

\[
\partial^2_{\lambda^2} \psi_J(\lambda_0, f_0^d, \eta) - \partial^2_{\lambda^2} \psi_J(\lambda_0, f_0^d, \eta_0)
\]

\[
= \frac{\partial^2}{\partial \lambda^2} \left(\frac{T - \lambda_0}{\lambda_0(1 - \lambda_0)} \right) Y 1\{D = 0\} \frac{f_J(d \mid X)}{f_0^d} \left(\frac{f_J(d \mid X) - f_0^d(d \mid X)}{g(X)} \right)
\]

\[
= \frac{\partial^2}{\partial \lambda^2} \left(\frac{T - \lambda_0}{\lambda_0(1 - \lambda_0)} \right) Y 1\{D = 0\} \frac{f_J(d \mid X)(g_0(X) - g(X)) - (f_0^d(d \mid X) - f_J(d \mid X))g(X)}{g(X)g_0(X)}
\]

Moreover, by assumption B.1, for \(\varepsilon_N = o(N^{-1/4}) \), \((**)\) and \((***)\) are of smaller order. Therefore, by the definition of \((P_N, F_N, T_N)\), boundedness of the nuisance parameters, and
triangle inequality, we have
\[
\sup_{\lambda \in T_N, \ f \in F_N} E[|\partial_n^2 \psi_J(Z, \theta_0, \lambda, f, \eta) - \partial_n^2 \psi_J(Z, \theta_0, \lambda, f_0, \eta)|^2] \\
\lesssim \sup_{\eta \in T_N} E[|\partial_n^2 \psi_J(Z, \theta_0, \lambda_0, f_0, \eta) - \partial_n^2 \psi_J(Z, \theta_0, \lambda_0, f_0, \eta_0)|^2] \\
\lesssim \sup_{\eta \in T_N} \|f_J(d|X) - f_{0J}(d|X)\|^2_{P^2} + \|g(X) - g_0(X)\|^2_{P^2} \\
\lesssim M_J^2 \epsilon_N^2
\]
which shows (a). Similarly, by Taylor’s theorem,
\[
\partial_n \partial_f \psi_J(\lambda, f_d, \eta) - \partial_n \partial_f \psi_J(\lambda_0, f_0, \eta_0) = \partial_n \partial_f \psi_J(\lambda_0, f_0, \eta_0) - \partial_n \partial_f \psi_J(\lambda_0, f_0, \eta_0) \\
+ \partial_n \partial_f^2 \psi_J(\lambda_0, f_0, \eta_0)(f_d - f_0) \\
+ \partial_n^2 \partial_f \psi_J(\lambda_0, f_0, \eta_0)(\lambda - \lambda_0)
\]
and (c) can be shown using similar arguments as (a).

Finally, we show (d):
\[
\sup_{\eta \in T_N} E[|\partial_n \psi_J(Z, \theta_0, \lambda_0, f_0, \eta) - \partial_n \psi_J(Z, \theta_0, \lambda_0, f_0, \eta_0)|^2] \lesssim M_J^2 \epsilon_N^2.
\]
Note that
\[
\partial_n \psi_J(\lambda, f_d, \eta) = \frac{\partial}{\partial \lambda} \left(\frac{T - \lambda}{\lambda (1 - \lambda)} \right) \mathbf{1}\{D = 0\} \frac{f_J(d|X)}{f_d \cdot g(X)}.
\]
which implies
\[
\partial_n \psi_J(\lambda_0, f_0, \eta) - \partial_n \psi_J(\lambda_0, f_0, \eta_0) \\
= \frac{\partial}{\partial \lambda} \left(\frac{T - \lambda_0}{\lambda_0 (1 - \lambda_0)} \right) Y \mathbf{1}\{D = 0\} \left(\frac{f_J(d|X)}{g(X)} - \frac{f_{0J}(d|X)}{g_0(X)} \right) \\
= \frac{\partial}{\partial \lambda} \left(\frac{T - \lambda_0}{\lambda_0 (1 - \lambda_0)} \right) Y \mathbf{1}\{D = 0\} \left(\frac{f_J(d|X)(g_0(X) - g(X)) - (f_{0J}(d|X) - f_{0J}(d|X))g(X)}{g(X)g_0(X)} \right).
\]
Therefore, by the definition of T_N, boundedness of the nuisance parameters, and triangle inequality, we have
\[
\sup_{\eta \in T_N} E[|\partial_n \psi_J(Z, \theta_0, \lambda, f, \eta) - \partial_n \psi_J(Z, \theta_0, \lambda_0, f_0, \eta)|^2] \\
\lesssim \sup_{\eta \in T_N} \|f_J(d|X) - f_{0J}(d|X)\|^2_{P^2} + \|g(X) - g_0(X)\|^2_{P^2} \lesssim M_J^2 \epsilon_N^2.
\]
This completes the proof for the auxiliary results.

Part III: Conclusion

Combining the results from I and II, we have

\[
\hat{\text{ATT}}(d) - \hat{\text{ATT}}(d) = \frac{1}{N} \sum_{i=1}^{N} K_h(D_i - d)Y_i^\lambda - E[K_h(D - d)Y^\lambda] \quad (1)
\]

\[
- \frac{E[Y^\lambda|D = d]}{f_d^0} \frac{1}{N} \sum_{i=1}^{N} (K_h(D_i - d) - E[K_h(D - d)]) \quad (2)
\]

\[
- \frac{1}{N} \sum_{i=1}^{N} \psi_J(Z_i, \theta_{0J}, \lambda_0, f_d^0, \eta_0) \quad (3)
\]

\[
- \frac{1}{N} \sum_{i=1}^{N} S_f^0(K_h(D_i - d) - E[K_h(D_i - d)]) \quad (4)
\]

\[
+ o_p((Nh)^{-1/2}) + o_p(N^{-1/2}M_J) \quad (5)
\]

\[
+ \theta_0 - \theta_{0J} \quad (6)
\]

where each of (1) - (4) is an average of i.i.d zero-mean terms with the variance growing either with kernel bandwidth \(h\) or the series term \(J\).

Since \(J\) and \(h\) grows with \(N\), we need a triangular array CLT to establish the asymptotic results. The Lyapunov conditions are easy to verify for the kernel terms (1),(2),(4). Moreover, by assumption, \(E[\{m_J^d(D)\}^2] \propto \tilde{M}^2_J\) and \(E[\{m_J^d(D)\}^3] \propto \tilde{M}^3_J\), and using boundedness assumptions on the nuisance parameters, we have \(E[\psi_J^2] \propto \tilde{M}^2_J\) and \(E[\psi_J^3] \propto \tilde{M}^3_J\), then the Lyapunov condition is also satisfied for (3). Then by CLT, together with assumptions B.1 and B.2, we have

\[
\frac{\hat{\text{ATT}}(d) - \hat{\text{ATT}}(d)}{\sigma_N/\sqrt{N}} \rightarrow^d N(0,1)
\]

with \(\sigma_N\) defined by

\[
\sigma_N^2 := E\left[\left(\frac{1}{f_d^0}(K_h(D - d)Y^\lambda - E[K_h(D - d)Y^\lambda])\right.
ight.
\]

\[
- \left. \psi_J + \left(\frac{\theta_J}{f_d^0} - \frac{E_{\lambda Y}^d}{f_d^0}\right)(K_h(D - d) - E[K_h(D - d)]) \right]^2 \]

where we have used the fact that \(S_f^0 = -\theta_J/f_d^0\). ■
References

