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Abstract

Conditional density enjoys a series representation, with each term being a known

function multiplied by its conditional expectation. This structure is especially benefi-

cial in high-dimensional settings, where these conditional expectations can be flexibly

estimated using various machine learning methods. However, choosing the right series

terms is challenging. We introduce a data-driven estimator using a cross-validation

procedure and demonstrate its optimality through an oracle inequality that bounds

the estimation error. Beyond our theory-backed estimation strategy, we underscore the

extensive role of conditional density in economics, especially as the generalized propen-

sity score in causal inference with continuous treatment. Furthering this discourse,

we extend the widely-used difference-in-differences models to accommodate continuous

treatment. Specifically, we establish identification, estimation, and inference results for

the causal parameter of interest under the double/debiased machine learning framework.

To illustrate the practicality of our methods, we revisit two notable empirical studies:

Acemoglu and Finkelstein (2008) on technology adoption in U.S. healthcare industries,

and Duflo (2001) on the impact of a large-scale development policy in Indonesia.
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1 Introduction

Researchers are often interested in how the distribution of an outcome Y depends on covari-

ates X. The conditional density of Y given X, denoted as fY |X , is a fundamental statistical

object that summarizes such a relationship. Its role in economics is especially pronounced

with a wide range of applications. For instance, when studying the identification of struc-

tural economic models, conditional densities are used to establish the connection between

what can be observed from the data and the structural parameters (e.g. Matzkin (2007,

2013)). Take the first-price auction as an example: the conditional density of the bids

can be used to recover the private values of the bidders (e.g. Guerre et al. (2000); Per-

rigne and Vuong (2019)). Other notable examples1 where the conditional density plays

a key role include but are not limited to: treatment effects with continuous treatment

(e.g. Hirano and Imbens (2004); Kennedy et al. (2017); Su et al. (2019); Semenova and

Chernozhukov (2021)), nonparametric estimation of nonseparable models (e.g. Altonji and

Matzkin (2005); Matzkin (2015); Blundell et al. (2020)), and nonparametric estimation of

counterfactual distributions (e.g. Fortin el al. (2011)). Given the crucial role of conditional

density in economics, researchers might be inclined to avoid making potentially restrictive

parametric assumptions and, instead, prefer its nonparametric estimation. This can be

especially challenging in the high-dimensional setting where the number of covariates X is

large.

The literature on nonparametric conditional density estimation is vast. The most well-

known nonparametric method is perhaps the kernel method proposed in Rosenblatt (1969)

and a subsequent literature devoted to the kernel bandwidth selection for such estimator,

see for example, Hall et al. (1999, 2004) and the references therein. Other popular methods

include those using the local polynomial regression studied in Fan et al. (1996) and Fan

and Yim (2004), and more recently the methods using orthogonal series, see for example,

Efromovich (2010), Izbicki and Lee (2016, 2017) and the references therein. However, each

of the aforementioned estimators has drawbacks. Although kernel estimators have many

attractive theoretical properties, they converges slowly as the dimension of the conditioning

variable becomes large.2 On the other hand, while the estimators studied Izbicki and Lee

(2016, 2017) are designed for the setting with high-dimensional conditioning variables, they

are not data-driven in the sense that the theoretical properties developed require knowl-

edge of the unknown smoothness parameters.3 Moreover, even the data-driven estimators

1We will examine the role of the conditional density in these examples in detail in Section 2.
2See also Ma and Zhu (2013) for a review of various dimension reduction techniques, which often require

very strong assumptions.
3Both papers propose cross-validation algorithms but the theoretical properties of the resulting estima-

tors are not studied.
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from Hall et al. (2004), Fan and Yim (2004) and Efromovich (2010) have drawbacks: Hall

et al. (2004) require cross-validation searching over each covariate, which becomes compu-

tationally intractable as number of covariates grows; similarly, the thresholding estimator

from Efromovich (2010) requires tensor products of basis over each dimension; the cross-

validated estimator proposed by Fan and Yim (2004) performs well in their simulations,

but its theoretical properties have not yet been studied.4

To improve upon previous literature, we propose a data-driven nonparametric condi-

tional density estimator that is feasible in the high-dimensional setting. First, for a suitable

sequence of known functions {φj}∞j=1 of Y , we show the series expansion

fY |X(y|x) =
∞∑
j=1

E[φj(Y )|X = x]φj(y)

holds under very general conditions. That is, the conditional density can be expressed as an

infinite sum of known functions multiplied by their conditional expectations. In particular,

for a high-dimensional conditioning variable X, instead of estimating the conditional den-

sity directly, this representation allows researchers to estimate the conditional expectation

E[φj(Y )|X] in each series term using any state-of-the-art machine learners, such as deep

neural networks. This motivates an estimator of the form

f̂J(y|x) =
J∑
j=1

Ê[φj(Y )|X = x]φj(y)

and notably Izbicki and Lee (2017) have studied the properties of such an estimator for a

deterministic series cutoff J . Nevertheless, choosing the optimal series cutoff deterministi-

cally requires researchers to make potentially unrealistic assumptions that are difficult to

verify in practice. Therefore, it is preferred to choose J in a data-driven way with theoret-

ical guarantees. To this end, we resort to a cross-validation procedure, in which the series

cutoff Ĵ is chosen by minimizing an empirical risk. Our final estimator takes the form of an

average of sub-sample estimators with this cutoff using every training sample. Following the

general strategy proposed by Lecué and Mitchell (2012), we establish an oracle inequality

that shows our estimator is asymptotically optimal. To the best of our knowledge, this is

the first such result of a nonparametric conditional density estimator that is both data-

driven and feasible in the high-dimensional setting. We recognize that there is an extensive

literature on cross-validation, and due to space limitations, we refer the readers to Arlot

4There is also a large literature on parametric or semiparametric density/conditional density estimation.
For example, Rothfuss et al. (2019) use neural networks to estimate conditional densities with flexible
parametric mixture models (see also the references therein for a review on the related literature).
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and Celisse (2010) for a comprehensive survey.

To add to the growing literature in economics where the conditional density plays a key

role, we study in detail a new application in the context of difference-in-differences mod-

els. Difference-in-differences (DiD for short) is one of the most popular empirical research

designs, and recent theoretical advancements aim to accommodate the complexities in em-

pirical research. Notably, these developments include extensions to semiparametric settings

(Abadie (2005)), nonlinear settings (Athey and Imbens (2006)), and multiple periods and

staggered treatment timing settings (e.g., Callaway and Sant’Anna (2021); de Chaisemartin

and D’Haultfoeuille (2020); Athey and Imbens (2022)). While most of the existing litera-

ture has primarily focused on DiD models with binary or discrete treatments, recent studies

(e.g., Callaway et al. (2021) and D’Haultfoeuille et al. (2021)) have explored DiD settings

with continuous treatment, opening up new avenues for investigation.

In this study, we expand upon this new line of research by considering a setting similar

to Abadie (2005) but with continuous treatments. In particular, we identify the average

treatment effect on the treated (ATT) at any continuous treatment intensity under the

conditional parallel trends assumption. In this setting, the conditional density of the con-

tinuous treatment plays the role of a generalized propensity score. The fully nonparametric

estimator of the ATT in this setting involves averaging over estimated infinite-dimensional

nuisance parameters, which can result in substantial biases. To address this issue, in context

of DiD settings with binary or discrete treatments, Sant’Anna and Zhao (2020) propose

doubly robust estimators, while Chang (2020) studies doubly/debiased machine learning

estimators that allow for high-dimensional controls. Building on the insights from Chang

(2020), we adopt and extend the double/debiased machine learning (DML) framework from

CCDDHNR (2018) to accommodate continuous treatments.

To illustrate the usefulness of our methods, we revisit two influential empirical studies.

First, we apply our method to Acemoglu and Finkelstein (2008), which examines the impact

of the 1983 Medicare Prospective Payment System (PPS) reform on the adoption of new

technologies in the heavily regulated healthcare industry. The PPS reform notably altered

the reimbursement structure for Medicare inpatient expenses, thus affecting hospitals with

varying proportions of Medicare patients differently. Given this context, the share of Medi-

care patients can be interpreted as a continuous treatment variable, making Acemoglu and

Finkelstein (2008) an examplary case for applying our methodology. We thus nonparamet-

rically estimate the ATT of the PPS reform in a continuous DiD context, providing a more

detailed understanding of the effects of this policy reform.

The second empirical study we consider is Duflo (2001), which studies the effect of

a large-scale policy intervention in Indonesia (INPRES) on educational outcomes. One
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analysis in Duflo (2001) relies on a binary DiD comparing high vs. low treatment intensity

regions. In contrast, we model this policy intervention as a continuous treatment, thus

allowing the treatment group to have varied treatment intensities. While Duflo (2001)

finds a small positive effect of this policy, our more granular analysis finds important and

statistically significant heterogeneity in the ATTs across different treatment intensities.

The rest of the paper is organized as follows. In section 2, we motivate by providing a

more detailed review of the previously mentioned examples involving conditional densities.

In section 3, we first show the validity of the series representations of the conditional den-

sities, then discuss the construction of our cross-validated estimator in detail, and finally,

establish the theoretical properties of our estimator. In section 4, we formally set up the

DiD models with continuous treatment, show identification, estimation, and inference under

the DML framework, and illustrate the usefulness of our results with empirical applications.

Finally, we conclude in Section 5. All the proofs will be given in the appendix.

2 Applications

In this section, we discuss several empirical examples in which the estimation of a conditional

density plays a crucial role.

Example 2.1 (First Price Auction). Consider the first price auction in the independent

private values (IPV) setting studied in Guerre et al. (2000). I ≥ 2 bidders have i.i.d. private

values {Vi}Ii=1 with Vi ∈ [vL, vH ] ⊂ R. In an auction with characteristics X, each bidder

bids Bi = s(Vi, X) that maximizes the expected utility. If the equilibrium bid function s is

monotonic in V , then using the first-order condition, the unobserved private value Vi can

be written as

Vi = Bi +
1

I − 1

G(Bi|I,X)

g(Bi|I,X)

where G(·|I,X) and g(·|I,X) denote the observed equilibrium bid distribution and density

conditional on the number of bidders I and the covariates X. This is the main identification

equation that enables the researcher to recover the model primitives (V, fV |X,I). Using

this identification result, Guerre et al. (2000) study the nonparametric estimation of these

primitives using kernel methods. For potentially high-dimensional covariates X, Haile et al.

(2006) and Perrigne and Vuong (2019) propose single index restrictions on the relationship

between the private value V and covariates X to reduce the dimension. While the estimators

based on such single index restrictions are easy to implement, they can suffer from significant

misspecification errors if the single index assumptions do not hold. In contrast, our method

will allow researchers to nonparametrically estimate the conditional bid distribution fV |I,X
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for high-dimensionalX using machine learning methods in a data-driven way without having

to rely on such single index restrictions.

Example 2.2 (Nonparametric Nonseparable Models). In many nonparametric non-

separable models, the parameters of interests can be constructively identified as functions of

conditional densities of observed variables. For example, Altonji and Matzkin (2005) study

a model of the form Y = m(X, ε1, · · · , εK) where Y,X are observable, (ε1, · · · , εK) are unob-

servable, and there exists an external observable Z such that X ⊥ (ε1, · · · , εK)|Z.5 Specif-

ically, the authors consider the identification of the local average response β(x), which is

defined as the average derivative of m with respect to x over the distribution fε1,··· ,εK |X = x.

They show that β(x) is identified as

β(x) =

∫
∂E[Y |X = x, Z = z]

∂x
fZ|X=x(z)dz.

A nonparametric estimator can be constructed based on this expression, which requires the

estimation of the conditional density fZ|X . For another example, in nonparametric nonsep-

arable simultaneous equation models, Matzkin (2015) shows that the structural derivatives

can be constructively identified as the functionals of conditional densities of observed vari-

ables. As before, the nonparametric estimation based on such identification results rely

on the nonparametric estimation of the conditional densities. The literature typically em-

ploys kernel estimators due to their well-established theoretical properties; however, such

estimators typically require the researchers to specify the kernel bandwidth, and even with

covariates of moderate dimensions, the rate of convergence of such estimators can be slow.

Therefore, our data-driven estimator can be used as an alternative that potentially achieves

a faster rate of convergence even with high-dimensional covariates.

Example 2.3 (Continuous Treatment). Hirano and Imbens (2004) introduce a gener-

alization of the potential outcome framework to the continuous treatment case, i.e., Y (t)

for t ∈ [t0, t1], which is referred to as the individual level “dose-response” function, and the

parameter of interests is the average dose-response function E[Y (t)]. It is assumed that we

observe an i.i.d. sample of {Yi, Xi, Ti}, where Yi := Yi(Ti) denotes the observed potential

outcome at the received treatment dose Ti, Xi is a vector of covariates, and Ti ∈ [t0, t1] de-

notes the continuous treatment. Hirano and Imbens (2004) refer to the conditional density

fT |X as the generalized propensity score. Under the weak unconfoundedness assumption

5A recent related work by Blundell et al. (2020) that studies the individual counterfactuals also uses the
external variables. Similarly, the identification and estimation results established in that study rely on the
conditional density fY |X,Z and its estimator.
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that Y (t) ⊥ T |X for all t ∈ [t0, t1], the average potential outcome at T = t is identified as

E[Y (t)] = E[E[Y |T = t, fT |X(t|X)]]. (1)

The estimation of E[Y (t)] based on above expression requires the estimation of the condi-

tional density fT |X as a first step. In Hirano and Imbens (2004), fT |X is estimated using a

linear model, which can fail to capture the complexities of the true conditional densities.

In a related study, Kennedy et al. (2017) propose an alternative identification result

of E[Y (t)] using a doubly robust signal Y (η), where η = (E[Y |T,X], fT |X) denotes the

infinite-dimensional nuisance parameters, such that

E[Y (t)] = E[Y (η)|T = t]. (2)

To estimate E[Y (t)] using this expression, researchers first need to estimate the conditional

density fT |X .6 Kennedy et al. (2017) estimate such conditional density by first assuming a

model T = µ(X) + σ(X)ε, then using a suite of ML methods to estimate µ(X) = E[T |X]

and σ(X) = V ar(T |X), and in the final step, estimating fT |X , now effectively a univariate

density estimation problem, using the standard kernel method. One concern is that this ap-

proach only captures the relationship between treatment T and covariates X up to a second

moment. In contrast to Hirano and Imbens (2004) and Kennedy et al. (2017), our non-

parametric conditional density estimator does not require additional modeling assumptions

while still being computationally tractable.

Example 2.4 (Conditional Average Partial Derivative). Let T ∈ R be a continuous

treatment variable, Y = Y (T ) the observed potential outcome, Z a vector of controls, and

X be a subvector of Z. Semenova and Chernozhukov (2021) define the conditional average

partial derivative ∂tE[Y (t)|X = x] as the parameter of interest. Under the conditional

independence assumption {Y (t), t ∈ R} ⊥ T |Z, Semenova and Chernozhukov (2021) show

that ∂tE[Y (t)|X = x] is identified as

∂tE[Y (t)|X = x] = E[Y (η)|X = x] (3)

where Y (η) is a signal that depends on the nuisance parameter η := (E[Y |T,Z], fT |Z). The

estimation of ∂tE[Y (t)|X = x] based on (3) requires first estimating the nuisance parame-

ters η̂, particularly the conditional density fT |Z . Semenova and Chernozhukov (2021) first

assume a model T = µ(Z) + ε with ε ⊥ Z, then estimate µ(Z) using LASSO, and finally,

6In recent works, Kallus and Zhou (2018), Su et al. (2019), and Colangelo and Lee (2022) also consider
the estimation (and inference in the latter two studies) of E[Y (t)] using an alternative score. Nevertheless,
the conditional densities still have to be estimated as a first step.
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estimate the conditional density as a univariate density. Nevertheless, the independence

assumption ε ⊥ Z can be difficulty to verify in practice, and the conditional density esti-

mator based on such a model can only capture the relationship between T and Z up to the

first moment. In contrast, our nonparametric estimator can be employed here without the

additional modeling assumption that ε ⊥ X, and can capture the rich complexity in fT |X

beyond the first moment.

Example 2.5 (Counterfactual Distributions). Counterfactual distributions have been

employed extensively in the studies of wage inequality. For example, in the context of

DiNardo et al. (1996), the parameter of interest is the counterfactual wage (Y ) distribu-

tion of the non-unionized workers (group A) if their covariates/attributes had the same

distribution of the unionized workers (group B). Under an assumption of invariance of

counterfactual distributions (see Fortin el al. (2011)), the counterfactual density of group

A can be identified as

f cYA(y) =

∫
fYA|XA(y|x)

dFXB (x)

dFXA(x)
dFXA(x) (4)

where the ratio of densities can be estimated by

dFXB (X)

dFXA(X)
=
P (DB = 1|X)

P (DA = 1|X)

P (DA = 1)

P (DB = 1)

(see Fortin el al. (2011) section 4.5-4.6 for details). A nonparametric estimator of the coun-

terfactual density can be constructed using the expression in (4), which requires estimation

of the conditional density fYA|XA , and our estimator can be employed directly here. Alter-

natively, an orthogonal score for (4) can be constructed for high-dimensional covariates,7

and our data-driven conditional density estimator that utilizes machine learning methods

can be particularly useful in this setting.

3 Conditional Density Estimation

In this section, we show that conditional density can be represented as a series, discuss the

construction of our cross-validated estimator based on such representation in detail, and

establish theoretical results on estimation error for such an estimator.

7Currently we are studying this as a work in progress in a separate project.

8



3.1 Series Representation

First, we state a formal result that the conditional densities admit series expansions under

fairly general conditions. We make the following assumptions:

Assumption 3.1. (i) Y and X are Polish spaces; (ii) (Y,X) ∈ Y × X are distributed

according to a probability measure P on Borel σ-algebra B := BY ⊗ BX ; (iii) there exist

σ-finite Radon measures νY and νX on BY and BX such that P � ν := νY ⊗ νX .

Assumption 3.1 is a set of mild regularity conditions generally satisfied in most cases

in economics. For example, economic variables Y and X typically take values in well-

behaved subsets Y ×X ⊆ R×Rd, which, together with assumption 3.1 (iii), ensure that8

L2(νY ) is separable and countable orthonormal bases exist. Such orthonormal bases will

provide the functions used in the series representation of the conditional densities. Moreover,

assumption 3.1 (iii) does impose restrictions on the support of Y and X and rules out

random variables with degenerate distributions; nevertheless, both continuous and discrete

X’s are allowed. Under this assumption, the Radon-Nikodym derivative of P w.r.t. ν exists,

i.e., there is a density fY,X s.t.∫
B
fY,X(y, x)dν(y, x) = P (B) for all B ∈ B.

The conditional density can then be defined as:

fY |X(y|x) :=


fY,X(y,x)
fX(x) if fX(x) 6= 0

0 if fX(x) = 0
where fX(x) :=

∫
Y
fY,X(y, x)dνY (y).

Note that since fX(x) = 0 implies fY,X(·, x) = 0 νY -a.e., defining fY |X(y|x) := 0 for

fX(x) = 0 has little impact in a measure-theoretic sense. However, such a definition ensures

fY |X(y|x)fX(x) = fY,X(y, x) for all (y, x) ∈ Y ×X, which will help us simplify the formal

arguments when showing the series representation is valid. Finally, let PX be the projection

of P onto X, that is, for any B ∈ BX , PX(B) = P (Y × B). Then, we have the following

proposition.

Proposition 3.1. Suppose Assumption 3.1 is satisfied. Then the following results hold:

(i) L2(νY ) is separable;

8L2(νY ) is defined as the set of square-integrable functions of Y w.r.t. the measure νY .
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(ii) If fY |X ∈ L2(νY ⊗ PX) and {φj}∞j=1 is an orthonormal basis for L2(νY ), then

P
(

lim
J→∞

∫ (
fY |X(y|X)−

J∑
j=1

E[φj(Y )|X]φj(y)
)2
dνY (y) = 0

)
= 1

(iii) If fY |X ∈ L2(νY ⊗ PX) and {φj}∞j=1 is an orthonormal basis for L2(νY ), then

lim
J→∞

E
[ ∫ (

fY |X(y|X)−
J∑
j=1

E[φj(Y )|X]φj(y)
)2
dνY (y)

]
= 0

if and only if limJ→∞
∑J

j=1E[(E[φj(Y )|X])2] <∞.

The proposition formally states that if fY |X is square integrable w.r.t the product mea-

sure νY ⊗ PX , the series expansion holds PX -a.e. (in the sense that for a.e. x, the series

converges in L2(νY )) as well as in L2(νY ⊗ PX). From now on, we will use the following

representation whenever the convergence holds:

fY |X(y|x) =
∞∑
j=1

E[φj(Y )|X = x]φj(y). (5)

In particular, L2(νY ) being separable guarantees the existence of a countable orthonormal

basis (due to Zorn’s lemma and Gram-Schmidt process). Since νY is known, in practice,

there are many well-known orthonormal bases for the researchers to choose from. Therefore,

each term in the series expansion (5) is the multiplication of a known function and its

conditional expectation, which motivates a series estimator for the conditional density. In

the next section, we will discuss the construction of our estimator based on such series

expansions in detail.

3.2 Cross-Validated Estimator

Suppose we have an i.i.d. random sample {(Yi, Xi)}ni=1 ∼ (Y,X) that satisfies assumption

3.1 and an orthonormal basis {φj}∞j=1 on L2(νY ). Building on the series expansion estab-

lished in the previous section, an estimator can be constructed by first picking a cutoff J

and estimating the conditional expectations hj(X) := E[φj(Y )|X] for j = 1, · · · , J , then

forming

f̂J(y|x) =
J∑
j=1

ĥj(x)φj(y). (6)
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For potentially high-dimensional covariates X, researchers can estimate the conditional

expectations {hj}Jj=1 using any of their preferred machine learning methods.

In order to assess the quality of such an estimator, we need a metric to quantify how

“close” this estimator is from the true conditional density fY |X . Since the series expansion

holds for fY |X ∈ L2(νY ⊗ PX), it is natural to consider the L2 norm w.r.t. the product

measure νY ⊗ PX . For notational simplicity, for any function g of (y, x) in L2(νY ⊗ PX),

we denote this norm as

‖g‖2H :=

∫
g2(y, x)dνY (y)dPX(x) = EX [

∫
g2(y,X)dνY (y)]

where the second equality holds by definition since PX is the probability measure.

Suppose we want to find an esitmator f̂ that minimizes the L2 norm:

‖f̂ − fY |X‖2H =

∫ (
f̂(y|x)− fY |X(y|x)

)2
dνY (y)dPX(x) (7)

which is the same as minimizing the following 9:

‖f̂ − fY |X‖2H − ‖fY |X‖2H =

∫
f̂2(y|x)− 2f̂(y|x)fY |X(y|x)dνY (y)dPX(x). (8)

This expression is impractical to work with since it requires knowledge of the true conditional

density fY |X . However, the following lemma shows that this objective is equivalent to a

risk function that can be estimated from data.

Lemma 3.1. Define a loss function

Q((y, x), f) :=

∫
f2(t, x)dνY (t)− 2f(y, x) (9)

and the associated risk of an estimator f̂ as

R(f̂) := E[Q((Y,X), f̂)] = E[

∫
f̂2(y|X)dνY (y)− 2f̂(Y |X)]. (10)

Then risk R(f̂) satisfies

R(f̂) = ‖f̂ − fY |X‖2H − ‖fY |X‖2H . (11)

This lemma can be shown using the Law of Iterated Expectations and the fact that

fY |X is the conditional density of Y given X. The proof is given in the appendix. The

9This holds because ‖fY |X‖2H = EX [
∫
f2
Y |X(y,X)dνY (y)] is a constant.
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lemma suggests that our problem is essentially a risk minimization problem and the risk is

minimized at the true conditional density fY |X . In particular, given data {(Yi, Xi)}ni=1 and

f̂ , we can define the empirical risk of f̂ as

Rn(f̂) =
1

n

n∑
i=1

Q((Yi, Xi), f̂) =
1

n

n∑
i=1

∫
f̂2(y|Xi)dνY (y)− 2f̂(Yi|Xi). (12)

We now have all the neceassary ingredients to describe our cross-validation procedure,

adapting the general framework laid out in Lecué and Mitchell (2012) to our setting. This

cross-validation procedure is formally summarized in Algorithm 1.

Algorithm 1 Average Cross-Validated Conditional Density Estimator

Input: Data D(n) = {(Yi, Xi)}ni=1, orthonormal basis {φj}∞j=1 of Y , a maximum cutoff p,
a method for estimating conditional expectations, and an integer K ≥ 2.

Output: Estimator f̄ (n)(y|x).

1: Split D(n) into K disjoint subsets D
(nV )
1 , . . . , D

(nV )
K as validation sets and their comple-

ments {D(nT )
k = D(n) \D(nV )

k }Kk=1 as training sets.
2: for all 1 ≤ k ≤ K do
3: for all 1 ≤ j ≤ p do

4: Estimate hl = E[φl(Y )|X] for l = 1, . . . , j using training set D
(nT )
k .

5: Construct f̂
(nT )
j (D

(nT )
k )(y|x) =

∑j
l=1 ĥl(x)φl(y).

6: end for
7: end for
8: for all 1 ≤ j ≤ p do

9: Calculate K-fold empirical risk Rn,K according to (13) using {f̂ (nT )
j }Kk=1.

10: end for
11: Solve ĵ∗ = arg min1≤j≤pRn,K .

12: return f̄ (n)(y|x) =
∑ĵ∗

l=1 h̃l(x)φl(y), where h̃l(x) = K−1
∑K

k=1 ĥl(D
(nT )
k ).

The first step is to split a sample into training and validating subsamples. Formally,

let n denote the sample size and without loss of generality suppose n is divisible by some

fixed integer K. Then we split the sample10 D(n) := {(Yi, Xi}ni=1 into K disjoint validating

sets D(nV ) of equal size nV := n/K. These validating sets will be used to compute the

empirical risks of candidate estimators. In addition, for each of these validating sets, use

the remaining data D(nT ) := D(n) \D(nV ) of size nT := n− nV as the training set.

In the second step, we use the training sets to train a large dictionary of candidate

10Although we assume an i.i.d. random sample, in practice, the data researchers received might have
been sorted by certain criteria independent of the data-generating process beforehand. In this case, the
researchers can use an external randomization device independent of the data-generating process to reshuffle
the data before the sample splitting.
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estimators. To be more precise: first, we pick a large p, which denotes the cardinal-

ity of the dictionary, and consider a set of statistics11 {f̂1, · · · , f̂p} such that its j-th

element is f̂j(y|x) =
∑j

l=1 ĥl(y)φl(x) (recall ĥl’s are the preferred machine learners of

hl = E[φl(Y )|X]’s); second, on each of the k = 1, · · · ,K training sets D
(nT )
k of size

nT , we train the machine learners of conditional expectations {hl}pj=1 and then construct

f̂
(nT )
j (D

(nT )
k ) for j = 1, · · · , p using the trained {ĥl(D

(nT )
k )}pl=1.

In the third step, we use these trained estimators to evaluate a empirical version of the

risk on the validating sets. Specifically, we define the K-fold empirical risk of f̂ ∈ {f̂j}pj=1

as

Rn,K(f̂) :=
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )(D

(nT )
k )) (13)

where recall D
(nT )
k is the k-th training set and D

(nV )
k = D(n)\D(nT )

k is the k-th validating set.

That is, for each f̂ (nT )(D
(nT )
k ) trained using D

(nT )
k , we evaluate its empirical risk on the vali-

dating set D
(nV )
k . Then we average over the K validating sets to obtain the K-fold empirical

risk. One potential concern is that the empirical risk Rn,K takes the form of an empirical

average of loss Q, which involves integral calculations. However, note that the estimators

we consider take the form f̂j =
∑j

l=1 ĥlφl with φl’s being elements in an orthonormal basis.

Then by orthonormality, the loss can be rewritten as Q((y, x), f̂j) =
∑j

l=1 ĥ
2
l (x)−2f̂j(y, x),

which only requires simple summations when computing the empirical risk.

In the final step, we construct our estimator by first finding the index ĵ∗ that corresponds

to the smallest K-fold empirical risk, and then average over f̂ĵ∗ trained on each training

sets. Formally, we define our estimator as

f̄ (n) :=
1

K

K∑
k=1

f̂
(nT )

ĵ∗
(D

(nT )
k ) with ĵ∗ = arg min

1≤j≤p
Rn,K(f̂j). (14)

Although f̄ aggregates sub-sample estimators, it can still be expressed a series estimator

f̄ (n)(y|x) =
∑ĵ∗

j=1 h̃j(x)φj(y) with h̃j := K−1
∑K

k=1 ĥj(D
(nT )
k ). That is, we first use CV

procedure to select ĵ∗, and then we define a new estimator for each conditional expectation

hj by using the average of sub-sample ĥj ’s. We note that this estimator differs from the

typical K-fold CV estimator f̂CV := f̂
(n)

ĵ∗
that is trained by using the full sample D(n) after

finding the ĵ∗ above. While we do not compare12 the quality of f̄ (n) to f̂CV , we emphasize

that f̄ (n) is also constructed using the full sample and does not require re-training after

11We follow Lecué and Mitchell (2012) and define a statistic f̂ = (f̂ (m))m∈N as a sequence such that each
f̂ (m) is associated with f̂ (m)(D(m)) trained using data D(m).

12As commented in Lecué and Mitchell (2012), with additional regularity conditions, the estimation error
of f̂CV can be bounded by that of the sub-sample estimator.
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selecting ĵ∗.

Another potential issue is that the estimator may not be a proper conditional density,

i.e.,
∫
f̄(y|x)dνY (y) may not equal one and the estimator may be negative. The former

is easy to solve: if we assume the orthonormal basis {φj} of L2(νY ) contains a constant

term, without loss of generality, say φ1, then
∫
φj(y)dνY (y) = 1{j = 1}, which implies that∫

f̄(y|x)dνY (y) = 1 always. To address the latter, we consider the following set

C := {c ∈ `2 :

∞∑
j=2

cjφj(y) ≥ −φ1}. (15)

Let ĥj = Ê[φj(Y )|X], and for any x, we consider the projection of {ĥj(x)}∞j=2 onto C:

{h̃j(x)}∞j=2 = arg min
c∈C
‖ĥ(x)− c‖`2

which can be implemented either on the final estimator f̄ or on each of the sub-sample

estimator f̂ĵ∗ . In particular, since for each x, fY |X(·|x) is a density in L2(νY ), one can

consider the orthogonal projection algorithms (e.g., the p-algorithm in Gajek (1986)), which

can be shown to weakly reduce the estimation error (see Theorem 1 in Gajek (1986) for

example). Therefore, our main results will be established for the pre-processed estimators,

and in practice researchers can decide what post-processing methods to use if they find the

estimator is negative.

3.3 Theoretical Results

We first establish an oracle inequality13 for our estimator, that is, an inequality that relates

our estimator to an “ideal” estimator that, in our case, minimizes the estimation error. The

proof follows from the general strategy laid out in Lecué and Mitchell (2012) with some

modifications, which we defer to the appendix.

Theorem 3.1. Let {(Yi, Xi)}ni=1 be an i.i.d random sample distributed according to (Y,X)

such that assumption 3.1 is satisfied. Assume fY |X ∈ L2(νY ⊗ PX) and let {φj}∞j=1 be an

orthonormal basis on L2(νY ). Moreover, assume fY |X and the statistics {f̂j}pj=1 defined as

in (6) are bounded by some constant M . Let f̄ be the estimator defined in (14). Then for

any constant a > 0, there exists a constant C that only depends on a such that

E[‖f̄ (n) − fY |X‖2H ] ≤ (1 + a) min
1≤j≤p

E[‖f̂ (nT )
j − fY |X‖2H ] + C

log p

nV
. (16)

13See, for example, section 4 in Candes (2006) for an introduction.
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This oracle inequality essentially states that the estimation error14 of our estimator f̄

is bounded above (up to a constant) by the smallest achievable estimation error for a given

dictionary of estimators {f̂j}pj=1. In particular, the theorem accommodates any machine

learning estimators of the conditional expectations ĥl’s in each f̂j(y|x) =
∑j

l=1 ĥl(x)φl(y).

Note that the oracle inequality (16) is established under very few assumptions. In fact,

the main assumption in the theorem we rely on is that the true conditional density fY |X

and the dictionary of estimators {f̂j}pj=1 are uniformly bounded above by some constant.

We can even modify the theorem to allow for this bound to grow with p.15 Moreover,

the convexity of the loss Q and the associated risk R defined in section 3.2 plays a major

role in the proof. Specifically, the convexity of the risk allows us to bound the expected

difference of R(f̄ (n)) − R(fY |X) by two terms, one being the oracle and the other being a

shifted empirical process. The shifted empirical process is then controlled by a maximal

inequality modified from Lecué and Mitchell (2012) to suit our estimator, which gives rise

to the log(p)/nV term in (16).

On the other hand, to obtain a concrete estimation error that is more familiar to prac-

titioners, additional assumptions on our estimator and on the true conditional density fY |X

are needed. Recall that the estimation error of f̂J satisfies the bias-variance decomposition

E[‖f̂J − fY |X‖2H ] =
J∑
j=1

E[(ĥj(X)− hj(X))2] +
∞∑

j=J+1

E[h2
j (X)],

which suggests that this estimation error should be minimized at some cutoff J under

suitable regularity conditions. Moreover, as long as K (as in K-fold cross-validation) is

fixed, the sample sizes of the training set (nT ) and validating set (nV ) are in the same

order as the sample size n. Hence, for sufficiently large p, the minimum is achieved in the

oracle in equation (16), which establishes an upper bound on the estimation error of our

cross-validated estimator f̄ . In the next theorem, we show such a result under one possible

set of regularity conditions.

Theorem 3.2. Suppose conditions in Theorem 3.1 are satisfied. Moreover, assume that

(i) for some constant 0 < δ ≤ 1, E[(ĥj(X)− hj(X))2] � n−δ for all j ≥ 1;

(ii) for some constant γ > 0,
∑∞

j=J+1E[h2
j (X)] . J−γ for all J ≥ 0.

14The expectation is taken w.r.t. the estimator.
15In the proof, we kept the bound M explicit throughout the proof and one can make assumptions on

how fast M grows with p and obtain different bounds on the shifted empirical process.
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Then, for p & nδ/(γ+1), the following holds

E[‖f̄ − fY |X‖2H ] = O

(
n
− γ
γ+1

δ ∨ log p

n

)
.

Condition (i) in Theorem 3.2 makes an assumption on the quality of the conditional

expectation estimators ĥj(X) = Ê[φj(Y )|X]. In general, without further assumptions,

e.g., linearity or sparsity, we should expect δ to be small for nonparametric estimators and

high dimensional X. A growing literature in statistics and machine learning is actively

investigating the estimation error of various state-of-the-art machine learning estimators.

For example, Chen et al. (2022) establish the estimation error in the form of condition

(i) (up to a log term) for the deep ReLU neural networks for Hölder classes embedded

in high-dimensional spaces. Similarly, Suzuki (2018) and Hayakawa and Suzuki (2020)

establish estimation errors of deep neural networks for other function classes. See section 4

in Izbicki and Lee (2017) for several other examples that satisfy (i). In particular, machine

learning estimators such as deep neural networks are particularly useful in the setting with

high-dimensional covariates X: such ML estimators can often adapt to the intrinsically low-

dimensional structures typically exhibited in high-dimensional data, which translates to a

much faster rate of convergence (see, e.g., Chen et al. (2022)).

On the other hand, condition (ii) controls the rate of decay of the tail sum of the

series and hence the bias. In particular, as shown in Proposition 3.1 (iii), the existence

of the series expansion of the conditional density fY |X requires that the tail sum satisfies

limJ→∞
∑∞

j=J+1E[h2
j (X)] = 0. In the context of the regression and density estimation,

condition (ii) is closely related to the full approximation set discussed in Lorentz (1966) and

Yang and Barron (1999), and such assumptions place restrictions on the smoothness of the

function classes under consideration. For comparison, in the context of full approximation

set, see Yang and Barron (1999), with δ = 1 and γ = 2α, we obtain the minimax rate

n−2α/(2α+1). In general, however, it is difficult to compare our results to the minimax

optimal nonparametric estimation rates in Rd+1 (eg. the minimax rate n2α/(2α+d+1) in

Stone (1982)): in addition to the nonparametric regression problem E[φj(Y )|X] in Rd, we

also have the additional structure on how fast E[(E[φj(Y )|X])2] decays with j.

We want to emphasize three appealing features of our results. First, our conditional

density estimator accommodates any estimators for conditional expectations in the series.

In particular, the researchers can use the growing variety of ML estimators to estimate each

term. The second appeal of our estimator is that it is practical in the setting where the

conditioning variable X is high-dimensional. When the conditions16 for fast convergence of

16For example, such conditions include but are not limited to the sparsity or approximate sparsity as-
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ML estimators ĥj in the high-dimensional setting are satisfied, our estimator achieves a fast

rate of convergence. Last but not least, our estimator is data-driven with theoretical guar-

antees. In particular, the optimal cutoff J is selected by a data-driven cross-validation type

of procedure, which does not rely on the smoothness assumptions on the true conditional

densities.

In some applications, researchers may be interested in the conditional density at a point,

i.e., fY |X(y|X) at a specific y. For example, such a result can be useful in our continuous

difference-in-differences framework, which will be discussed in the next section. Therefore,

we conclude this section with our next theorem that shows the rate in Theorem 3.2 can also

be achieved in this point-wise case under the proposed conditions.

Theorem 3.3. Suppose conditions in Theorem 3.1 and 3.2 are satisfied. Moreover, assume

(i) the orthonormal basis is uniformly bounded;

(ii) for every J ≤ p, EIG(ΣJ)/EIG(ΣJ) = O(1), where EIG(ΣJ) and EIG(ΣJ) denote

the largest and smallest eigenvalues of ΣJ respectively and ΣJ := E[BJ(X)BJ(X)′]

with BJ(X) being the column vector BJ(X) := (hj(X)− ĥj(X))Jj=1;

(iii) there exist a measurable function c(·) that satisfies E[c2(X)] < ∞ and a constant

γ > 0 such that for all J ≥ 0, |
∑∞

j=J+1 hj(x)φj(y)| . c(x)J−γ/2.

Then, for p & nδ/(γ+1),

E[‖f̄ (n)(y)− fY |X(y)‖2PX ,2] = O(n
− γ
γ+1

δ ∨ log p

n
).

In the theorem, condition (i) ensures that the magnitude of each basis term does not

affect the bounds on variance and bias. Examples of bounded bases include trigonometric

bases on intervals in R and Hermite basis on the whole R. This condition can be relaxed

to allow for unbounded bases, potentially at the cost of a slower rate of convergence. More-

over, condition (ii) is a high-level assumption, which is determined by the quality of the

estimators ĥj ’s. In particular, the diagonal entries of the matrix ΣJ measure the variances

of each conditional mean estimator in the series, while the off-diagonal entries measure the

cross-term correlations. In contrast, when establishing MISE in Theorem 3.2, there is no

such correlation due to the orthonormality of φj ’s. Additionally, we assume (iii) to control

the point-wise bias, which is motivated by the analogous conditions in the (unconditional)

orthogonal series density estimations. For the unconditional case, such conditions can be

sumptions typically assumed in the literature.
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satisfied under certain smoothness assumptions for specific orthonormal bases; see discus-

sions in Wahba (1975) for the cosine basis and Liebscher (1990) for the Hermite basis. In

our case, however, we require such conditions on the tail-sum to hold uniformly on the

support of the conditioning variable X (up to a square-integrable function c(·)).

Remark 3.1. So far we have assumed Y is low-dimensional. In the case when Y =

(Y1, · · · , YG), the same techniques we discussed above can be applied using an orthonormal

basis on Y ⊆ RG via a tensor product of one-dimensional orthonormal bases. The num-

ber of the basis terms formed through such tensor product grows quickly with G and can

become intractable for large G. One can consider an alternative approach that relies on the

decomposition:

f(Y1, · · · , YG|X1, · · · , XK) =f(Y1|Y2, · · · , YG, X1, · · · , Xk)× f(Y2|Y3, · · · , YG, X1, · · · , Xk)

× · · · × f(YG|X1, · · · , Xk).

Then using this expression, instead of having to deal with potentially large number of tensor

products of orthonormal bases, we can apply our results on each term in the product and

form the final estimator accordingly. A rigorous study of such estimator is left for future

research.

In the next section, we extend the difference-in-differences models to the case of contin-

uous treatment. In this setting, the conditional density of the continuous treatment plays a

crucial role in identifying the parameter of interest, and its series representation also guides

the estimation and inference procedures.

4 Double/Debiased Continuous Difference-in-Differences

Difference-in-Differences (DiD) is one of the most popular research designs in empirical work.

While the more common DiD settings focus on binary or discrete multi-valued treatments,

there has been an increasing amount of interest in DiD with continuous treatments. The

main idea of continuous DiD is simple: the treatment group rarely receives the treatment at

the same level, and the treatment effect can vary with the “dose/intensity” of the treatment.

Therefore, instead of comparing the outcomes of the treated and the controls before and

after the treatment at the group level, one can futher examine the treated group and compare

the outcomes at different treatment intensity.

In fact, continuous treatment is prevalent in many empirical settings. For instance, each

affected individual can have varied exposure to policy interventions, marketing campaigns,
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or environmental pollutants, all of which can be modeled as continuous treatments. In

particular, several recent studies in various fields have employed DiD with continuous treat-

ments. These include the study by Zeng et al. (2022) on the impact of online advertising

sites shutdowns, Cook et al. (2023)’s work on racial discrimination in public accommoda-

tions, and Ananat et al. (2022)’s study on the effects of the expanded child tax credit.

Nevertheless, while continuous DiD finds its popularity among empirical studies, its the-

oretical foundation is still limited, and a few recent studies have just started to fill this gap,

notably Callaway et al. (2021); D’Haultfoeuille et al. (2021); de Chaisemartin et al. (2022).

For instance, Callaway et al. (2021) examine continuous DiD in the context of the com-

monly used two-way fixed effect (TWFE) regression setting. Concurrently, D’Haultfoeuille

et al. (2021) generalize the change-in-changes model studied in Athey and Imbens (2006) to

continuous treatment. In contrast to the aforementioned literature, our results build upon

the semiparametric framework proposed in Abadie (2005), broadening its applicability to

settings involving continuous treatments.

The main advantage of our approach is that it explicitly accounts for the presence of

covariates and focuses directly on causal parameter: the average treatment effect on the

treated (ATT) at any given treatment intensity. As noted in Abadie (2005), the (uncon-

ditional) parallel trends assumption17 can be restrictive if there are covariates that affect

outcome dynamics and their distributions differ between control and treatment groups.

Therefore, we follow the same motivation and incorporate covariates into our identifica-

tion and estimation strategy. However, one major difference sets our results apart from

Abadie (2005) is the presence of the continuous treatment, particularly its conditional den-

sity, which is commonly referred to as the “generalized propensity score” (see Hirano and

Imbens (2004)). In this context, the causal parameter of interest, the ATT, becomes a

functional of the infinite-dimensional conditional density. This motivates us to consider

the estimation and inference of the causal parameters under the double/debiased machine

learning (DML) framework studied in CCDDHNR (2018).

In particular, the estimation of the causal parameter requires first estimating nuisance

parameters, including the conditional density of the continuous treatment. For potentially

high-dimensional controls, researchers have to resort to machine learning methods to esti-

mate these nuisance parameters. However, the use of machine learning methods can often

result in substantial bias in the estimation of the causal parameter, see CCDDHNR (2018)

and the references therein for further examples. Moreover, if one estimates the nuisance

parameters and the causal parameter using the same sample, another source of bias due

17That is, on average, in the absence treatment, the time trends in the outcomes between the controls
and the treated are the same.
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to overfitting can also arise. To address these concerns, DML employs both an orthogo-

nalization procedure and a cross-fitting procedure to reduce the influence of the nuisance

parameters.

Due to these attractive properties of DML, drawing parallels with Chang (2020)—which

provides insights into the DiD with discrete treatments under the DML framework—we

extend the DML to our continuous DiD setting. Specifically, we derive orthogonal scores

in both repeated outcomes (panel data) and repeated cross-sections settings. Using these

scores, we construct DML estimators of the ATTs and study their asymptotic properties.

In particular, we show that the DML estimators are asymptotically normal and derive their

asymptotic variance. In addition, in each of these settings, we provide a detailed empirical

example to illustrate the usefulness of our method. Specifically, in the panel data setting,

we revisit Acemoglu and Finkelstein (2008) which studies the impact of the 1983 Medicare

payment system reform on the heavily regulated health care industry. Moreover, in the

repeated cross-sections setting, we re-examine the effect of a large-scale policy intervention

in Indonesia on education outcomes first studied by Duflo (2001).

4.1 Setup and Identification

In this section, we formally set up the difference-in-differences with continuous treatment

following Abadie (2005). First, using the potential outcome notation (e.g. Rubin (1974)), let

Yi,t(0) denote the potential outcome of individual i in period t when receiving no treatment,

and similarly let Yi,t(d) denote the potential outcome of individual i in period t when

receiving treatment with intensity d.

The treatment variable D is modeled as a random variable with a mixture distribution18:

a probability mass at 0 and a continuous distribution on an interval [dL, dH ] excluding

0. Specifically, the control group consists of individuals who receive treatment D = 0,

and we need a relatively large number of individuals in the control group so that the the

comparison between the treated and the control group is meaningful. On the other hand, the

treated individuals can receive varied treatments, each with a potentially different treatment

dose/intensity D = d ∈ [dL, dH ] according to some continuous distribution. Moreover,

we will assume throughout that assumption 3.1 holds for (D,X) so that the conditional

probability P (D = 0|X) and density fD|X(d|X) for d > 0 are well defined.

Remark 4.1. To formalize the mixture distribution of the treatment variable, consider a

18We are going to implicitly assume that the treatment status and treatment intensity are independently
determined.
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measure19 ν = δ0 + λ, with λ being the Lebesgue measure and δ0 being the Dirac delta

at 0. Suppose FD is the distribution of D. Then the density of D w.r.t. ν is given by

dFD/dν := 1{D = 0}P (D = 0) + 1{D > 0}fD with fD being the probability density of D

on [dL, dH ]. In particular, FD(0) =
∫

1{D = 0}dFdν dν = P (D = 0) and for any measurable

A ∈ B such that 0 /∈ A, FD(D ∈ A) =
∫
A fD dλ.

We restrict our attention to the two-period (t − 1, t) models and, as in the usual DiD

setting, suppose that no subject receives treatment at period 0, so we may suppress the

time notation in treatment Di. Let Xi denote the set of individual level covariates. We

consider the following set of assumptions:

Assumption 4.1 (Repeated Outcomes). The observed data {Yi,t−1, Yi,t, Di, Xi}ni=1 are in-

dependently and identically distributed.

Assumption 4.2 (Repeated Cross-Sections).

(i) For each individual i in the pooled sample, the researcher observe {Yi, Di, Xi, Ti},
where Ti is a time indicator = 1 if obervation i belongs to the post-treatment sample

and = 0 otherwise, and Yi = (1− Ti)Yi,t−1 + TiYi,t;

(ii) Conditional on T = 0, data are i.i.d. from the distribution of (Yt−1, D,X); Condi-

tional on T = 1, data are i.i.d. from the distribution of (Yt, D,X).

Assumption 4.3 (Support).

(i) No subject receives treatment in the pre-treatment period;

(ii) the support of treatment D satisfies supp(D) = {0}t [dL, dH ] with 0 < dL < dH ≤ ∞;

(iii) P (D = 0|X) > 0 almost surely;

(iv) 1 > P (D = 0) > 0 and D admits a strictly positive probability density fD on (dL, dH).

Assumption 4.4 (Conditional Parallel Trend). For all d ∈ [dL, dH ], the following holds

E[Yt(0)− Yt−1(0)|X,D = d] = E[Yt(0)− Yt−1(0)|X,D = 0].

Assumptions 4.1 and 4.2 are standard in the DiD literature. In particular, Assumption

4.1 does not allow the covariates to vary over time, while Assumption 4.2(ii) requires that

19This ν is essentially the dominant measure νY we discussed in section 3.1. We drop the subscript here
to avoid the confusion in notation, as here the Y is not the variable that we are interested in establishing
the density.
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the sample is not stratified by the outcome, treatment, or covariates.20 Moreover, Assump-

tion 4.3 describes the requirements on the support of the treatment. Specifically, in the

continuous DiD setting, the control group (D = 0) must have a positive measure, and the

treated group must have a positive likelihood of being treated at any intensity d ∈ (dL, dH).

We want to emphasize the importance of Assumption 4.4, the conditional parallel trends

condition that generalizes the discrete case of Abadie (2005), as the main identifying as-

sumption that enables us to identify the causal parameter of interest. This assumption

essentially states that, conditional on covariates, the unobserved counterfactual trend of

the treated at each given treatment intensity is the same as the observed trend of the

control group. In other words, the conditional parallel trends assumption allows us to sub-

stitute the unobserved counterfactual trend E[Yt(0) − Yt−1(0)|X,D = d] by the observed

trend E[Yt(0)− Yt−1(0)|X,D = 0] of the control group. Importantly, our extension of this

assumption to the continuous treatment setting allows us to consider the heterogeneity in

another dimension: the treatment intensity.

As commented in Abadie (2005), the covariates in DiD can serve two purposes, which

also apply to our continuous treatment setting. First, covariates can be used to account

for compositional differences between control and treatment groups that affect outcome

dynamics. Moreover, covariates allows researchers to capture the heterogeneous treatment

effects across different groups/individuals characterized by the covariates. In particular,

the conditional parallel trends assumption allows us to explicitly incorporate the covariates

in DiD nonparametrically, in contrast to commonly used parametric approaches in the

literature, such as a linear model, which can potentially introduce misspecification biases.

Next, we describe our target parameter. The causal parameter we are interested in is

the average treatment effect on the treated (ATT for short) at any given treatment intensity

d ∈ (dL, dH):

ATT (d) := E[Yt(d)− Yt(0)|D = d]. (17)

The interpretation of this parameter is analogous to the cases with discrete treatment: the

expected effect of a treatment with intensity d for those who actually received treatment with

intensity d. Note that ATT is a local measure, and in the absence of stronger assumptions,

the average treatment effect ATE(d) := E[Yt(d) − Yt(0)], which is the expected effect of

treatment with intensity d across the entire population, is not identified21.

The following theorem presents the main results of this section, in which we establish the

20However, as pointed out in Abadie (2005), in the case of stratified sampling, reweighing methods can
be applied to establish similar results.

21We note that ATE in this setting can be identified under a stronger form of parallel trends assumption
and can be shown to be numerically equivalent to ATT , see Callaway et al. (2021) Section 3.3 for details.
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identifications of ATT (d) for both repeated outcomes and repeated cross-sections settings.

Theorem 4.1 (Identification of ATT).

• (Repeated Outcomes) Suppose Assumptions 4.1, 4.3, and 4.4 hold. Then, for any

d ∈ (dL, dH),

ATT (d) = E[Yt − Yt−1|D = d]− E
[
(Yt − Yt−1)1{D = 0}

fD|X(d)

fD(d)P (D = 0|X)

]
.

• (Repeated Cross-Sections) Suppose Assumptions 4.2, 4.3, and 4.4 hold. Then, for any

d ∈ (dL, dH),

ATT (d) = E

[
T − λ
λ(1− λ)

Y |D = d

]
− E

[
T − λ
λ(1− λ)

Y 1{D = 0}
fD|X(d)

fD(d)P (D = 0|X)

]
where λ := P (T = 1).

Here we use the repeated outcomes case to illustrate the main idea. The proof for the

repeated cross-sections case is similar and is deferred to the appendix. We beginning by

writing the ATT as

ATT (d) = E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = d].

First, by the modeling assumptions that Yt = Yt(D) and Yt−1 = Yt−1(0) since no one

receives treatment in the pre-treatment period, we have

E[Yt(d)− Yt−1(0)|D = d] = E[Yt − Yt−1|D = d]. (18)

Second, by the law of iterated expectation, Bayes’ rule, and conditional parallel trends

assumption, we can express the counterfactual quantity as follows:

E[(Yt(0)− Yt−1(0))|D = d]

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = d]fX|D=d(x)dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = d]

fD|X(d|x)fX(x)

fD(d)
dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = 0]

fD|X(d|x)fX(x)

fD(d)
dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = 0]

fD|X(d|x)P (D = 0)

fD(d)P (D = 0|X = x)

P (D = 0|X = x)fX(x)

P (D = 0)
dx
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=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = 0]

fD|X(d|x)P (D = 0)

fD(d)P (D = 0|X = x)
fX|D=0(x)dx

= E

[
(Yt − Yt−1)1{D = 0}

fD|X(d|X)

fD(d)P (D = 0|X)

]
(19)

Subtracting (19) from (18), we obtain the desired result. In particular, in the third equality

in (19), we substitute the unobserved counterfactual trend E[(Yt(0)−Yt−1(0))|X = x,D = d]

by the observed trend E[(Yt(0) − Yt−1(0))|X = x,D = 0] of the control group, which is

allowed by the conditional parallel trends assumption.

With Theorem 4.1, one can build estimators for ATT (d) using the estimated sample

analogues. For potentially high-dimensional covariates, machine learning methods can be

employed to estimate the nuisance parameters, including the conditional density fD|X(d|X)

and the conditional probability P (D = 0|X). However, the use of machine learning methods

can often result in non-trivial first-order biases in the estimation of the causal parameter22,

which makes such “plug-in” estimators less desirable. One way to alleviate such biases

is to consider alternative estimating equations that reduce the “sensitivity” of the causal

parameters to the nuisance parameters. We formalize this idea in detail in the next section.

4.2 Orthogonal Scores

First, recall that in the repeated outcomes case,

ATT (d) =E[∆Y |D = d]− E
[

∆Y 1{D = 0}
fD|X(d)

fD(d)P (D = 0|X)︸ ︷︷ ︸
:=ϕ

]

:=E[∆Y |D = d]− θ0

where ∆Y := Yt − Yt−1 and θ0 := E[ϕ]. Since the potentially high-dimensional covariates

X only affects ATT (d) through infinite-dimensional nuisance parameters fD|X(d|X) and

P (D = 0|X) via a function ϕ, we focus on θ0 = E[ϕ]. In particular, we need to adjust ϕ

such that the first-order biases from estimating the infinite-dimensional nuisance parameters

are negligible. To make this statement more precise, we introduce the notion of Neyman

orthogonality. We use the repeated outcomes case as our main example for illustration as

the analogous discussion on repeated cross-sections only requires minor modifications.

For simplicity, consider the following notations: let θ0 ∈ Θ ⊂ R be the low-dimensional

parameter of interest; let ρ0 ∈ H denote the true low-dimensional nuisance parameters, e.g.,

22See CCDDHNR (2018) and references therein for a detailed discussion
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in the repeated outcomes case, ρ0 = fD(d) for a given d; let η0 ∈ T denote the true infinite-

dimensional nuisance parameters, which in our case include23 fD|X(d|X) and P (D = 0|X);

let Tn ⊂ T be a nuisance realization set in which the estimated η̂ takes values with high

probability; let Z be the observable random vector, e.g. Z = (Yt−1, Yt, D,X) in the repeated

outcomes setting; let ψ : (Z, θ, ρ, η) 7→ R denote a score24.

With these notations, following CCDDHNR (2018) and Chang (2020), we formally define

the Neyman orthogonality with respect to the infinite-dimensional nuisance parameters:

Definition 4.1 (Neyman Orthogonality). A score ψ satisfies the Neyman orthogonality at

(θ0, ρ0, η0) with respect to a nuisance realization set Tn ⊂ T if

(i) θ0 satisfies the moment condition EP [ψ(Z, θ0, ρ0, η0)] = 0;

(ii) for r ∈ [0, 1) and η ∈ Tn, the Gateaux (directional) derivative satisfies

∂rEP [ψ(Z, θ0, ρ0, η0 + r(η − η0))]|r=0 = 0.

In the above definition, (ii) ensures that the first-order bias from estimating the infinite-

dimensional nuisance parameters is zero. We will construct scores that satisfy this orthog-

onality condition with some modifications that we will clarify shortly. Recall that in our

case, ϕ− θ0 can be considered as a score since

E[ϕ− θ0] = E
[
∆Y 1{D = 0}

fD|X(d|X)

fD(d)P (D = 0|X)
− θ0

]
= 0.

This expression has two features that are worth noting. First, if fD(d) is estimated non-

parametrically, e.g. using a kernel density estimator, we can no longer achieve root-N rate

when estimating θ0. The slower than root-N rate appears to be a common feature in the

literature that involves continuous treatment variables, see for example, Kennedy et al.

(2017), Semenova and Chernozhukov (2021), and Colangelo and Lee (2022). Second, one

can verify that the score ϕ− θ0 does not satisfy Neyman orthogonality, and an adjustment

term has to be added.

In general, the adjustment term is straightforward to construct if the nuisance param-

eters can be written as conditional expectations. However, in our case, while P (D = 0|X)

can be expressed as a conditional expectation E[1{D = 0}|X], fD|X(d|X) being the con-

ditional density presents additional challenges. To address this issue, we use a modified

23New infinite-dimensional nuisance parameters can arise when constructing the orthogonal scores.
24We say ψ is a score function if at the true nuisance parameters (ρ0, η0) and the true θ0, the moment

condition E[ψ(Z, θ0, ρ0, η0)] = 0 holds.
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series representation of the conditional density introduced in Section 3, which allows us to

approximate the conditional density using a finite series of conditional expectations.

Specifically, let {φj}∞j=1 be an orthonormal basis of D, and for a strictly positive d ∈
(dL, dH), we can represent fD|X(d|X) as

fD|X(d|X) =

∞∑
j=1

E[φj(D)1{D > 0}|X]φj(d).

Then, under suitable regularity conditions,25

E[∆Y 1{D = 0}
fD|X(d|X)

fD(d)P (D = 0|X)
]︸ ︷︷ ︸

:= θ0

= lim
J→∞

E[∆Y 1{D = 0} fJ(d|X)

fD(d)P (D = 0|X)︸ ︷︷ ︸
:= ϕJ

]

where fJ(d|X) :=
∑J

j=1E[φj(D)1{D > 0}|X]φj(d). This expression suggests that we can

construct an orthogonal score for each fixed J instead. Let θ0,J = E[ϕJ ] so that the true

θ0 satisfies θ0 = limJ→∞ θ0,J (and for simplicity, we use the same notation for the repeated

cross-sections case). We will work with a fixed J for the remainder of this section and we

will discuss the effect on the asymptotic distributions of letting J grow with sample size in

the next section.

To simplify the expressions, denote: md
J(D) :=

∑J
j=1 φj(D)φj(d)1{D > 0}; g(X) :=

P (D = 0|X); E∆Y (X) := E[∆Y 1{D = 0}|X]; EλY (X) := E
[

T−λ
λ(1−λ)Y 1{D = 0}|X

]
with

λ = P (T = 1); fd := fD(d). The following lemma introduces scores that satisfy Neyman

orthogonality.

Lemma 4.1. Suppose there exists M
(1)
J ∈ L1(PYt−1,Yt,D,X) and M

(2)
J ∈ L1(PY,T,D,X) such

that |ψ(1)
J | ≤ M

(1)
J and |ψ(2)

J | ≤ M
(2)
J almost surely. Then the scores ψ

(1)
J and ψ

(2)
J satisfy

Neyman orthogonality defined in (4.1), where

(i) for the repeated outcomes setting,

ψ
(1)
J := ∆Y 1{D = 0} fJ(d|X)

fd · g(X)
− θ0,J

+
md
J(D)g(X)− 1{D = 0}fJ(d|X)

fd · g2(X)
E∆Y (X);

(20)

25For example, if we assume boundedness of the ∆Y , fD and fD|X , we can apply bounded convergence
theorem to establish this result.
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(ii) for the repeated cross-sections setting,

ψ
(2)
J :=

T − λ
λ(1− λ)

Y 1{D = 0} fJ(d|X)

fd · g(X)
− θ0,J

+
md
J(D)g(X)− 1{D = 0}fJ(d|X)

fd · g2(X)
EλY (X).

(21)

The proof is given in the appendix, in which we explain the construction of the adjust-

ment term and verify the Neyman orthogonality conditions given in Definition 4.1. The

assumption on the existence of integrable functions M
(1)
J and M

(2)
J is a mild regularity con-

dition that allows us to interchange expectation and derivative. This assumption can be

readily checked under the boundedness of the nuisance parameters in the scores, which will

be made precise in the next section. For notational simplicity, we drop the superscripts on

ψ
(1)
J and ψ

(2)
J whenever the context is clear.

We note that in these new scores, the infinite-dimensional nuisance parameters are

fJ(d|X), g(X), E∆Y (X), and EλY (X), with the latter two being the new ones created

when constructing the adjustment terms. In particular, the estimating moments for θ0,J ’s

based on these orthogonal scores are not sensitive to potentially biased estimates of these

nuisance parameters. In the next section, we will construct DML estimators of θ0,J ’s using

these scores and establish their asymptotic properties.

4.3 Estimation and Inference

In this section, we focus our discussion on the repeated outcomes case and we provide the

results for the repeated cross-sections in the supplementary material.

Since (20) is a score, we have E[ψJ ] = 0 for any J , from which we obtain a moment

condition for the target parameter θ0,J :

θ0,J = E
[
∆Y 1{D = 0} fJ(d|X)

fd · g(X)
+
md
J(D)g(X)− 1{D = 0}fJ(d|X)

fd · g2(X)
E∆Y (X)

]
. (22)

Then, the ATT (d) is identified as ATT (d) = E[∆Y |D = d]− limJ→∞ θ0,J , which suggests

we can approximate ATT (d) as

ATT (d) ≈ E
[
E[∆Y |D = d]−∆Y 1{D = 0} fJ(d|X)

fd · g(X)
+

md
J(D)g(X)− 1{D = 0}fJ(d|X)

fd · g2(X)
E∆Y (X)

] (23)
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for some “large” J . Therefore, we can construct an estimator for ATT (d) based on the

sample analogue of (23). In particular, since ψJ is an orthogonal score, for high-dimensional

X, we can use machine learning methods to estimate the nuisance parameters without

having to worry about the first order biases from doing so.

Moreover, another key aspect of the DML estimator is the use of cross-fitting techniques

to reduce the overfitting bias from estimating the nuisance parameters using machine learn-

ers. We follow the precedure studied in CCDDHNR (2018) and the main idea is as follows.

First, we partition the random sample into K ≥ 2 disjoint subsets {Ik}Kk=1 of equal size

n = N/K. Then, for each k ∈ {1, · · · ,K}, we use the sample Ick := N \ Ik to estimate

the nuisance parameters with the preferred machine learning methods. Next, we compute

sample averages according to (23) using the estimated nuisance parameters evaulated at the

sample Ik to obtain the k-th estimate ÂTT (d)k for ATT (d). Finally, we average through

the K estimates to obtain the final estimator. The following algorithm summarizes the

procedure.

Algorithm 4.1 (CDID Estimator, Repeated Outcomes). Let {Ik}Kk=1 denote a random

partition of a random sample {(Yi,t−1, Yi,t, Di, Xi}Ni=1, each with equal size n = N/K, and

for each k ∈ {1, · · · ,K}, let Ick := N \ Ik denote the complement.

• Step 1: for each k, construct

ÂTT (d)k :=
1

n

∑
i∈Ik

Êd∆Y,k −∆Yi1{Di = 0}
f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)

−
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

Ê∆Y,k(Xi)

where f̂d,k, Êd∆Y,k, f̂J,k, ĝk, Ê∆Y,k are the estimators of fd, E[∆Y |D = d], fJ(d|X), g(X)

and E∆Y (X) respectively using the rest of the sample Ick. In particular, f̂d,k, Êd∆Y,k
are kernel estimators, ĝk, Ê∆Y,k are estimated using ML methods (e.g. deep neural

networks), and each term in f̂J,k is estimated estimated using ML for a large J .

• Step 2: average through the K estimators to obtain the final estimator

ÂTT (d) :=
1

K

K∑
k=1

ÂTT (d)k.

Remark 4.2. It is important to note that at each k = 1, · · · ,K, the nuisance parameters

and the ATT are estimated using disjoint subsamples. While doing so helps reduce the over-

fitting bias, the sample splitting also significantly simplifies the asymptotic analysis, which
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itself has a long history in the literature (see CCDDHNR (2018) and references therein).

Moreover, the cross-fitting ensures that the final estimator uses the full sample, and hence

the choice of K does not affect the asymptotic analysis of our estimator. In practice, we

recommend using K = 5 as a rule of thumb.

As we will establish shortly, to achieve valid inference results, we need an undermoothing

J for the conditional density estimator f̂J(d|X). This is the main reason why we opt to use

a large J instead of the cross-validated J in section 3 that is shown to balance the variance

and bias and hence may fail to be under-smoothing. Alternatively, we can also consider

using the cross-validated J multiplied by a term that grows with the sample size. Next,

we state the regularity conditions that allow us to prove the asymptotic normality of our

estimator for the repeated outcomes case. The corresponding conditions for the repeated

cross-sections are provided in the supplementary material.

Assumption 4.5 (Kernel). The kernel K satisfies:

(i) K is bounded and differentiable;

(ii)
∫
K(u)du = 1,

∫
uK(u)du = 0, 0 <

∫
u2K(u)du <∞.

and define Kh(u) := h−1K(u/h).

Assumption 4.6 (Orthonormal Basis). {φj}∞j=1 is an orthonormal basis on the support

of D such that

(i) md
J(D) =

∑J
j=1 φj(D)φj(d)1{D > 0} satisfies ‖md

J(D)‖∞ ≤ MJ for some constant

MJ that grows with J ;

(ii) E[(md
J(D))2] � M̃2

J and E[|md
J(D)|3] � M̃3

J for some constant M̃J that grows with J .

Assumption 4.7 (Bounds).

(i) for some constants 0 < c < 1 and 0 < C < ∞, fd > c, |E[∆Y |D = d]| < C, and

|E∆Y (X)| < C almost surely;

(ii) for some constants 0 < κ < 1
2 and for all J ≥ 1, κ < fJ(d|X), g(X) < 1 − κ almost

surely;

(iii) fd and E[∆Y |D = d] are twice continuously differentiable at D = d ∈ (dL, dH) with

bounded second derivatives.

Assumption 4.8 (Rates).
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(i) kernel bandwidth satisfies Nh→∞ and
√
Nh5 = o(1)and

√
N

max{MJ , h
− 1

2 }
E[|

∞∑
j=J+1

E[φj(D)1{D > 0}|X]φj(d)|] = o(1);

(ii) MJ/
√
N = o(1);

(iii) with probability tending to 1, ‖f̂J(d|X) − fJ(d|X)‖P,2 ≤ MJεN , ‖ĝ(X) − g(X)‖P,2 ≤
εN , ‖Ê∆Y (X)− E∆Y (X)‖P,2 ≤ εN ;

(iv) with probability tending to 1, ‖Ê∆Y (X)‖P,∞ < C, κ < ‖f̂J(d|X)‖P,∞ < 1 − κ, and

κ < ‖ĝ(X)‖P,∞ < 1− κ.

We use kernel to estimate the low-dimensional parameters fD(d) and E[∆Y |D = d]

given its well-established theoretical properties and these kernel estimators will play a role

in the asymptotic distributions of our estimator for ATT. We assume the standard regularity

conditions for kernel estimators in assumption 4.5, which are sufficient for a triangular array

CLT to hold. Assumption 4.6 is a set of regularity conditions on the orthonormal basis: (i)

is stated in very general terms and can usually be verified by the choice of the orthonormal

basis; similar to the assumptions on the kernel, (ii) is sufficient for Lyapunov conditions26

to hold so that a triangular array CLT can apply as J growing with n, which can be checked

with additional assumptions on the orthonormal basis (e.g. trigonometric basis or Hermite

basis). Assumption 4.8 concerns the quality of the nonparametric estimators: (i) requires

under-smoothing tuning parameters so that the bias vanishes asymptotically (otherwise

asymptotic normality still holds but not centered at θ0); (iii) is the standard assumptions

on the nuisance estimators in the DML literature. We remark that while N−1/4 rate are

needed for some nuisance estimators, the conditional density f̂J can converge at a slower

rate of MJN
−1/4. This does not contradict the existing literature, as in the continuous

treatment setting the nonparametric estimators for ATT (d) can not achieve
√
N rate.

Theorem 4.2 (Repeated Outcomes). Suppose assumptions 4.1, 4.3, 4.4, 4.5, 4.6, 4.7, and

4.8 hold. If εN = o(N−1/4), then

ÂTT (d)−ATT (d)

σN/
√
N

→d N(0, 1)

where

σ2
N := E

[( 1

fd
(Kh(D − d)∆Y − E[Kh(D − d)∆Y ])

26Alternatively, we can make a set of alternative assumptions and check the weaker Lindeberg’s conditions.
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− ψJ(Z, θJ , fd, η) + (
θJ
fd
−
Ed∆Y
fd

)(Kh(D − d)− E[Kh(D − d)])
)2]

.

and ψJ is defined as in (20)

The proof follows the general framework for DML estimators studied in CCDDHNR

(2018). The asymptotic variance roughly consists of two parts that contribute to the slower

than
√
N rate: the part from the orthogonal score ψJ that grows with J and the part from

the kernels used to nonparametrically estimate the density fD(d) and conditional mean

E[∆Y |D = d]. We intentionally left the expression of the asymptotic variance in this way

to avoid making further assumptions between the magnitudes of the kernel bandwidth h

and MJ (through series cutoff J). A similar result for repeated cross-sections is shown in

the supplementary material, which holds with only minor modifications.

With a consistent estimator σ̂2
N based on the expression in the theorem, one can estab-

lish a pointwise confidence interval for ATT (d). Following CCDDHNR (2018) and Chang

(2020), we consider the following cross-fitted variance estimator

σ̂2
N :=

1

K

K∑
k=1

En,k[
( 1

f̂d,k
(Kh(D − d)∆Y − Enc,k[Kh(D − d)∆Y ])

− ψJ(Z, θ̂J , f̂d,k, η̂k)

+ (
θ̂J

f̂d,k
−
Êd∆Y,k
f̂d,k

)(Kh(D − d)− Enc,k[Kh(D − d)])
)2

]

(24)

where

θ̂J :=
1

N

K∑
k=1

∑
i∈Ik

∆Yi1{Di = 0}
f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)

+
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

Ê∆Y,k(Xi)

and Enc,k denotes the empirical average using the auxiliary sample Ick. Then, the 1−α con-

fidence interval can be constructed as [ÂTT (d)− z1−α/2σ̂N/
√
N, ÂTT (d) + z1−α/2σ̂N/

√
N ]

where z1−α/2 denotes the 1− α/2 quantile of the standard normal random variable.

Alternatively, we can consider a multiplier bootstrap procedure to construct the confi-

dence interval for our estimator, which has been discussed extensively in recent studies, see,

e.g., Belloni et al. (2017), Su et al. (2019), Cattaneo and Jansson (2021), Colangelo and Lee

(2022), and Fan et al. (2022). Specifically, let {ξi}Ni=1 be an i.i.d. sequence of sub-exponential

random variables independent of {Yi,t−1, Yi,t, Di, Xi}Ni=1 such that E[ξi] = V ar(ξi) = 1.
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Then for each b = 1, · · · , B, we draw such a sequence {ξi}Ni=1 and construct

ÂTT (d)
∗
b :=

1

N

K∑
k=1

∑
i∈Ik

ξi

(
Êd∆Y,k −∆Yi1{Di = 0}

f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)

−
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

Ê∆Y,k(Xi)
)
.

(25)

Let ĉα be the α’s quantile of {ÂTT (d)
∗
b − ÂTT (d)}Bb=1, and we construct the confidence

interval as [ÂTT (d) − ĉ1−α/2, ÂTT (d) − ĉα/2]. We defer the theoretical discussions of this

procedure to future work.

Next, we apply our methods to two empirical applications where the research designs

can be reframed as continuous DiD.

4.4 Empirical Application 1: Acemoglu and Finkelstein (2008)

The Medicare Prospective Payment System (PPS) reform, introduced in 1983, changed

the way Medicare reimburses hospitals for inpatient care. Instead of a full-cost reimburse-

ment model based on actual expenses, hospitals began receiving a predetermined amount

per patient based on the diagnosis. Notably, during the first three years27 post-reform,

reimbursements for capital costs still reflected actual expenses. This meant that hospitals

treating Medicare patients experienced a relative increase in labor costs compared to capital

costs. Acemoglu and Finkelstein (2008) highlighted this unique aspect of the PPS reform.

Their research revealed that the PPS reform not only significantly raised the capital-labor

ratio in hospitals but also promoted the adoption of new technologies.

Specifically, one of the main theoretical predictions in Acemoglu and Finkelstein (2008)

posits that the PPS reform would result in a higher capital-labor ratio in hospitals. Fur-

thermore, if the elasticity of substitution between capital and labor is sufficiently large,

PPS reform should lead to an increase in demand for capital/technology. It is important

to note that, since only hospitals with Medicare patients are affected by this reform, these

effects should be bigger for hospitals with higher shares of Medicare patients. To test these

predictions empirically, Acemoglu and Finkelstein (2008) uses data from the Annual Amer-

ican Hospital Association (AHA) survey of hospitals from 1980 to 1986, which contains

information on hospital expenditure, employment, and other characteristics related to the

technologies at the hospital level.

27In fact, as noted in Acemoglu and Finkelstein (2008), there was no change to the Medicare’s reimburse-
ment for capital costs until 1991 due to various delays.

32



The baseline specification in Acemoglu and Finkelstein (2008) takes the following form

of a linear regression:

Yi,t = αi + γt +X ′itη + β · (Di · Postt) + εi,t, (26)

where Yi,t denotes either the capital-labor ratio or the total number of medical facilities28

of hospital i in year t, Di denotes the share of Medicare inpatient days in hospital i prior

to the PPS reform, Postt = 1{t ∈ post-PPS years} denotes the treatment-timing indicator,

Xit denotes a vector of covariates, and αi and γt denote hospital and year fixed effects

respectively. Acemoglu and Finkelstein (2008) argue that the coefficient β captures the

causal effect of the PPS reform on the capital-labor ratio or the technological adoption.

The main identifying assumption is that, in the absence of the PPS reform, hospitals with

different shares Di should have experienced similar changes in outcome variables over time,

i.e., a parallel trends assumption.

Notably, regression in (26) closely resembles the commonly used Two-Way Fixed Ef-

fects (TWFE) design, with an important distinction that the treatment variable Di here is

continuous. In fact, as pointed out in Callaway et al. (2021), with continuous treatment,

the coefficient β in (26) can be expressed as a weighted average of the ATT (d) over all the

treatment intenties with potentially negative weights29, which makes β difficult to interpret.

This is where our continuous DiD framework can be useful. In particular, we can reframe

the research design in Acemoglu and Finkelstein (2008) as a continuous DiD design with

the following setup:

• Prior to the PPS reform, no hospital was treated.

• Since the PPS reform only affected hospitals with Medicare patients, hospitals with

Medicare share Di = 0 can serve as the control group.

• The treatment group consists of hospitals with positive Medicare shares Di > 0. Since

the Medicare shares differ widely across hospitals, we can model the positive shares

as continuous treatment intensities.

• We consider the same outcome variables as the ones in (26): Yit can be either the

capital-labor ratio or some measures of technological adoption.

• We assume a conditional parallel trends assumption:

E[Yt(0)− Yt−1(0)|X,D = d] = E[Yt(0)− Yt−1(0)|X,D = 0].

28The total number of facilities can be used as a measure of technological adoption.
29See Proposition 10 in Callaway et al. (2021).
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That is, on average, in the absence of the PPS reform, the outcome variables of hospi-

tals with share Di = d should have experienced similar changes over time as hospitals

with no Medicare patients (shares Di = 0), conditional on a set of hospital-specific

covariates X determined prior to the PPS reform. We note that this assumption

strengthens the parallel trends assumption in Acemoglu and Finkelstein (2008) by

allowing covariates X to enter the identification nonparametrically.

• We also include a rich set of covariates X that are determined prior to the PPS

reform: number of beds, number of doctors/residents, whether in a metro area, and

a full set of states (or regions) dummies30. In addition, when the outcome variable is

the capital-labor ratio, we will include a set of binary variables that indicate whether

the hospital has a particular type of capital equipment (e.g., CT, MRI, etc.).

The causal effect of the PPS reform can be identified as the average treatment effect on the

treated (ATT) at each intensity d:

ATT (d) = E[Yt(d)− Yt(0)|D = d].

Importantly, in contrast to the constant β in (26), the causal parameter ATT (d) can be

directly employed to validate the main theoretical predictions of Acemoglu and Finkelstein

(2008) at a much more granular level. For example, the prediction that the PPS reform

should lead to an increase in capital-labor ratio can be validated if ATT (d) > 0 for all d > 0.

Moreover, the prediction that hospitals with higher shares of Medicare inpatients should

experience a greater increase in capital-labor ratio would hold if ATT (d) is increasing in d.

In fact, there are two potential methods to estimate ATT (d). First, the dataset in

Acemoglu and Finkelstein (2008) possesses a panel structure, allowing us to utilize our

estimator for the repeated outcomes case. As an illustration, the year 1983 to be designated

as the pre-treatment year (t−1), while any subsequent years can be considered as the post-

treatment year (t). On the other hand, given that the treatment intensity D represents

the Medicare share – information available for all years both prior to and following the

PPS reform – we can also employ our estimator for the repeated cross-sections scenario.

Therefore, we demonstrate our methods in both cases, specifically:

• In the repeated outcomes setting, we set t−1 = 1983 and, for each t ≥ 1984, estimate

the ATT at various treatment intensities. The outcome variables under consideration

30There are several other covariates that were mentioned in Acemoglu and Finkelstein (2008), including
whether the hospital is a general hospital, a short-term hospital, or a federal hospital. We opt to not include
these covariates since they can be used to determine a hospital’s exemption status from the PPS reform and
hence can violate the conditional parallel trends assumption.
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are capital-labor ratio and a measure of technological adoption (number of medical

facilities)31.

• In the repeated cross-sections setting, we also set t− 1 = 1983 and estimate ATT at

various treatment intensities for each t ≥ 1984. To provide a clearer illustration of

this concept, we center our analysis on the capital-labor ratio.

To begin with our analysis, let’s first examine the distribution of the treatment variable,

defined as the Medicare inpatient share for each hospital in 1983 prior to the PPS reform.

Figure 1 depicts the histogram of D for 1983, and the distribution of D is suitable for our
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Figure 1: Histogram of Treatment Intensity (Medicare Share in 1983)

continuous DiD framework. Specifically, a significant number of hospitals register at D = 0,

enabling us to consider these hospitals as the control group. Moreover, the positive Medicare

shares (D > 0) varies widely across hospitals and appear to follow a continuous distribution,

which allows us to view these positive shares as continuous treatment intensities.

We now turn to the results for the repeated outcomes (panel) setting, where the outcome

variable is the capital-labor ratio. In particular, using t − 1 = 1983 as the pre-treatment

31When the outcome variable is the technological adoption, we do not consider year 1986 due to data
availability.
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year, we estimate the causal parameter ATT(d) at various intensity d ranging from 0.1 to

0.8 for each t = 1984, 1985, 1986. The results are shown in Table 1 and Figure 2. In the

table, we provide standard errors in parentheses as well as bootstrap confidence intervals.

In Figure 2, we only plot the estimated ATTs for various intensities d and opt to omit the

confidence intervals for clearer visualization. It is crucial to note that all the estimates are

statistically significant.
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Figure 2: Estimated ATT(d) for Capital-Labor Ratio (Panel Data)

Specifically, we observe that all the estimated ATTs for the capital-labor ratio are pos-

itive, which corroborates the empirical findings in Acemoglu and Finkelstein (2008) and

provides further evidence that the PPS reform led to an increase in the capital-labor ratio.

Moreover, compared to the results from t = 1984, the estimates for t = 1985 and t = 1986

are much larger in magnitude, which implies that the hospitals respond to the PPS reform

gradually. For comparison, the estimated β in Acemoglu and Finkelstein (2008) is 1.13 for

the capital-labor ratio, which is larger than our estimates for t = 1984 but much smaller for

many of our estimates for t = 1985 and t = 1986. Interesting, such differentials by year are

consistent with the alternative research specifications in Acemoglu and Finkelstein (2008)

(see Table 2 column (3)), which also found that the impact of the PPS reform is incremental

over time.
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Finally, for all three years, the estimated ATTs vary widely across treatment intenties

and don’t display increasing trends, which is inconsis tent with the theoretical prediction

that hospitals with higher Medicare shares should experience a more substantial increase

in the capital-labor ratio. One possible explanation is that our estimates are not precise

enough to detect such pattern. Notebly, even though all our estimates are statistically

significantly different from zero, the associated confidence intervals are relatively wide,

which is an inherent feature given the relatively small sample size for using nonparametric

methods.

Similarly, we present evidence of increased technological adoption following the PPS

reform. The outcome variable here is the total number of various medical facilities in each

hospital, which can be used as a measure of technological adoption. As with our prior

analysis, we designate t − 1 = 1983 as the pre-treatment year. However, due to data

availability, we restrict our analysis of post treatment years to 1984 and 1985. We then

estimate the causal parameter ATT(d) at varying intensities d ranging from 0.1 to 0.8 for

both t = 1984 and t = 1985. The findings are shown in Table 2 and Figure 3.
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Figure 3: Estimated ATT(d) for Technological Adoption (Panel Data)

Figure 3 further reveals that the estimated ATTs for technological adoption are positive

at all the treatment intensities we considered. This validates the theoretical prediction
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in Acemoglu and Finkelstein (2008) that the PPS reform should lead to an increase in the

technological adoption. Moreover, similar to the findings for the capital-labor ratio, the 1985

estimates are much more substantial in magnitude comparing to their 1984 counterparts,

further suggesting that the impact of the PPS reform is incremental over time. Finally, for

both years, the estimates are increasing for lower treatment intensities and leveling off for

higher treatment intensities. This trend partially validates the theoretical prediction that

hospitals with higher Medicare inpatient shares should experience a bigger increase in the

technological adoption following the PPS reform 32.

In our analysis thus far, we have adhered to the research design of Acemoglu and Finkel-

stein (2008), utilizing the Medicare share from 1983 as our quasi-experimental variation for

causal analysis. However, it is crucial to acknoledge the potential changes in Medicare share

as a result of the PPS reform. Specifically, the PPS reform could lead to a reduction in

the Medicare share for hospitals with positive shares initially. Indeed, a comparison of the

histograms of Medicare share between 1983 and 1985, as displayed in Figure 4, reveals a

leftward shift in the distribution:
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Figure 4: Histograms of Treatment Intensity (1983 vs. 1985)

32We need to be cautious when comparing the estimates for different treatment intensities since the
confidence intervals are relatively wide, even though all but one estimates are statistically significant from
zero.
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Therefore, to account for the changes in the treatment intensity (Medicare share), we

treat the data as repeated cross-sections and apply our estimator accordingly. Specifically,

we focus on the capital-labor ratio as our main outcome variable, and we estimate ATTs

across a wide range of treatment intensities for t− 1 = 1983 and t = 1983, 1984, 1985. The

results from our repeated cross-sections methods, as shown in Table 3, differ considerably

from those in the panel setting. As a highlight, we plot the results for 1985 in Figure 5.
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Figure 5: Estimated ATT(d) for Capital-Labor Ratio (Repeated Cross-Sections)

Notably, most of the estimates for year 1984 are not significantly different from zero.

On the other hand, for 1985, as shown in Figure 5, the estimated ATTs are positive and

large for low treatment intensities. However, as the treatment intensity increases, these

estimates decrease in magnitude and can even become negative. A similar trend is evident

for 1986. This pattern markedly differs from what we see in the panel setting, where the

estimated ATTs are consistently positive across all treatment intensities. These findings

suggest that the PPS reform could lead to a decrease in the capital-labor ratio for hospitals

with high Medicare inpatient shares, which is in contradiction to the theoretical predictions

of Acemoglu and Finkelstein (2008). One possible explanation is that hospitals with high

volume of Medicare inpatients might have developed administrative and clinical systems

to effectively manage these patients, making it easier to adapt to PPS changes. Never-

theless, further investigations and formal theoretical analysis are needed to understand the
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underlying mechanism behind this phenomenon.

Remark 4.3. The estimators for the causal parameters are constructed based on the results

from the previous section. Here are the details of our implementation:

• A 5-fold cross-fitting is employed with data randomly shuffled before the sample split-

ting step33.

• The second-order Gaussian kernel with bandwidth h = O(N−1/4) is used to estimate

the density fD(d) and the conditional mean E[∆Y |D = d].

• The infinite-dimensional nuisance parameters are estimated using the Random Forest

(RF). The main advantage of using RF is that it can handle both continuous and

discrete covariates, which is crucial for our analysis since our covariates X include

both continuous variables and a large number of states dummies. However, we note

that other ML methods, such as deep neural networks, can also be used to estimate

the nuisance parameters.

• The orthonormal cosine basis on [0, 1] is utilized to estimate the conditional density

fJ(d|X), where the series cutoff J = O(N1/4) is chosen so that the under-smoothing

assumption is more plausible; each conditional expectation in fJ(d|X) is estimated

using the ML method mentioned above.

• The standard errors are calculated using the cross-fitted estimator defined in (24) and

(44). In addition, we also prenset 90-percent bootstrap confidence intervals constructed

using the multiplier bootstrap procedure defined in (25) and (45): Gaussian multipliers

{ξi}Ni=1 are drawn from a normal distribution with E[ξi] = V ar[ξi] = 1 for B = 1000

repetitions.

33To avoid having clusters of data being over-represented in the subsamples.

40



Table 1: Estimated ATT(d) for Capital-Labor Ratio (Panel)

(t = 1984) Bootstrap (t = 1985) Bootstrap (t = 1986) Bootstrap
ATT(D=d) CI ATT(D=d) CI ATT(D=d) CI

d = 0.1 0.4105 [0.0283, 0.7880] 0.8432 [0.4181, 1.2435] 0.9297 [0.5151, 1.3111]
(0.2269) (0.2492) (0.2423)

d = 0.15 0.6165 [0.1306, 1.0352] 0.9196 [0.4656, 1.3646] 1.1239 [0.6018, 1.6008]
(0.2683) (0.2826) (0.3008)

d = 0.2 0.9064 [0.3945, 1.3840] 1.1548 [0.2944, 1.9581] 1.4110 [0.8718, 1.9154]
(0.2999) (0.5333) (0.3303)

d = 0.25 1.0818 [0.6433, 1.5033] 1.3741 [0.4625, 2.2294] 1.5910 [1.1369, 1.9916]
(0.2616) (0.5482) (0.2821)

d = 0.3 1.0161 [0.7364, 1.2873] 1.4931 [0.5107, 2.4309] 1.5887 [1.1839, 1.9737]
(0.1780) (0.5869) (0.2507)

d = 0.35 0.9350 [0.6164, 1.2750] 1.7622 [0.4935, 2.9886] 1.4709 [0.9493, 1.9832]
(0.2034) (0.7452) (0.3260)

d = 0.4 0.8410 [0.4821, 1.2066] 1.8183 [0.4812, 3.0997] 1.2686 [0.7295, 1.8312]
(0.2262) (0.7911) (0.3424)

d = 0.45 0.7768 [0.3425, 1.2068] 1.9698 [0.5605, 3.2337] 1.2234 [0.6507, 1.7854]
(0.2648) (0.8052) (0.3453)

d = 0.5 0.7517 [0.1745, 1.2620] 2.0736 [0.5411, 3.3901] 1.2798 [0.5861, 1.8911]
(0.3316) (0.8763) (0.3951)

d = 0.55 0.7206 [0.1896, 1.1964] 1.9706 [0.5072, 3.2700] 1.3430 [0.6656, 1.9392]
(0.3114) (0.8500) (0.3893)

d = 0.6 0.6657 [0.3188, 0.9999] 1.6750 [0.4863, 2.7614] 1.3971 [0.8462, 1.9081]
(0.2144) (0.7133) (0.3303)

d = 0.65 0.6716 [0.3339, 0.9708] 1.4662 [0.4409, 2.4900] 1.4757 [0.9230, 2.0442]
(0.1978) (0.6191) (0.3406)

d = 0.7 0.6433 [0.2934, 0.9761] 1.2718 [0.5338, 2.0447] 1.4047 [0.8620, 1.9712]
(0.2064) (0.4566) (0.3523)

d = 0.75 0.5131 [0.1213, 0.9389] 1.0610 [0.3335, 1.8266] 1.1917 [0.6169, 1.7734]
(0.2533) (0.4584) (0.3670)

d = 0.8 0.5939 [0.0823, 1.1203] 1.2576 [0.4764, 2.0920] 1.1058 [0.5136, 1.6793]
(0.3197) (0.4973) (0.3752)

Notes: (i) d indicates the treatment intensity; (ii) standard errors calculated using cross-fitted
formula are shown in parentheses; (iii) 90%-CI using multiplier bootstrap shown in separate
columns; (iv) for all post-treatment period t = 1984, 1985, 1986, the baseline pre-treatment year is
t = 1983; (v) all the nuisance parameters are estimated nonparametrically using random forests.
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Table 2: Estimated ATT(d) for Technological Adoption (Panel)

(t = 1984) Bootstrap (t = 1985) Bootstrap
ATT(D=d) CI ATT(D=d) CI

d = 0.1 0.8735 [0.0915, 1.7011] 1.5012 [-0.1882, 3.2009]
(0.4965) (1.0257)

d = 0.15 1.3966 [0.4536, 2.3642] 2.4604 [0.2910, 4.7959]
(0.5939) (1.3896)

d = 0.2 1.7896 [0.8658, 2.6735] 4.4447 [2.4560, 6.4869]
(0.5797) (1.2381)

d = 0.25 1.6298 [0.6312, 2.6376] 5.1374 [3.7879, 6.4412]
(0.6205) (0.8375)

d = 0.3 1.4089 [0.7211, 2.1478] 4.5592 [3.6112, 5.5063]
(0.4495) (0.5956)

d = 0.35 1.5890 [0.5026, 2.6889] 4.2181 [2.9679, 5.5625]
(0.7052) (0.8108)

d = 0.4 2.0915 [0.1672, 4.0489] 4.5103 [3.0573, 6.0712]
(1.2231) (0.9589)

d = 0.45 2.5231 [0.1427, 4.8928] 5.4169 [3.8158, 6.9531]
(1.4911) (1.0446)

d = 0.5 2.5080 [0.3598, 4.6075] 6.0168 [4.3189, 7.5972]
(1.3630) (1.0569)

d = 0.55 2.0055 [0.5179, 3.3895] 5.8351 [4.3630, 7.1993]
(0.9108) (0.9049)

d = 0.6 1.3154 [0.5011, 2.1110] 5.0480 [3.5340, 6.5263]
(0.5214) (0.9178)

d = 0.65 1.0451 [0.2648, 1.8434] 4.5923 [2.4368, 6.7603]
(0.4889) (1.3030)

d = 0.7 1.6124 [0.6022, 2.5588] 5.1433 [2.6244, 7.6275]
(0.6122) (1.5093)

d = 0.75 2.3469 [0.4561, 4.2525] 5.7380 [3.5262, 7.8050]
(1.2027) (1.3071)

d = 0.8 1.7266 [0.0718, 3.2958] 4.7605 [3.3513, 6.1138]
(0.9883) (0.8721)

Notes: (i) d indicates the treatment intensity; (ii) standard errors calculated using cross-fitted
formula are shown in parentheses; (iii) 90%-CI using multiplier bootstrap shown in separate
columns; (iv) for all post-treatment period t = 1984, 1985, 1986, the baseline pre-treatment year is
t = 1983; (v) all the nuisance parameters are estimated nonparametrically using random forests.
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Table 3: Estimated ATT(d) for Capital-Labor Ratio (Repeated Cross-Sections)

(t = 1984) Bootstrap (t = 1985) Bootstrap (t = 1986) Bootstrap
ATT(D=d) CI ATT(D=d) CI ATT(D=d) CI

d = 0.1 0.2353 [-1.2893, 1.7216] 2.0781 [0.8862, 3.3181] 2.9498 [1.6976, 4.1190]
(0.7875) (0.7167) (0.7068)

d = 0.15 0.0883 [-2.7366, 2.6403] 2.3869 [1.0594, 3.7171] 2.5135 [0.8613, 4.0502]
(1.3344) (0.8000) (0.9556)

d = 0.2 0.6917 [-2.6378, 4.0499] 1.9482 [0.7840, 3.0539] 2.4511 [0.6327, 4.2523]
(1.6479) (0.6948) (1.0943)

d = 0.25 1.3698 [-0.7596, 3.4644] 1.9678 [1.0108, 2.8500] 3.0380 [1.6193, 4.3150]
(1.0835) (0.5569) (0.8298)

d = 0.3 1.5204 [0.4651, 2.6079] 1.5850 [0.8892, 2.2682] 3.9194 [2.3577, 5.3676]
(0.5881) (0.4476) (0.9160)

d = 0.35 1.1936 [0.2130, 2.2490] 0.7617 [-0.0446, 1.5849] 4.0648 [2.4131, 5.7084]
(0.5139) (0.4964) (0.9844)

d = 0.4 0.8755 [-0.3741, 2.1867] 0.1159 [-1.0158, 1.2250] 3.4234 [1.6636, 5.1449]
(0.6608) (0.6696) (1.0771)

d = 0.45 0.6473 [-0.6370, 1.8988] -0.0407 [-1.0800, 0.9564] 2.2998 [0.8718, 3.8182]
(0.6623) (0.6219) (0.8918)

d = 0.5 0.3921 [-0.8886, 1.6837] 0.1321 [-0.7900, 1.0085] 1.4233 [0.2360, 2.6172]
(0.6865) (0.5542) (0.7015)

d = 0.55 0.1512 [-1.0443, 1.2511] 0.2651 [-0.4893, 1.0051] 1.1309 [0.1526, 2.1676]
(0.6113) (0.4626) (0.5948)

d = 0.6 -0.0071 [-0.8876, 0.9202] -0.2605 [-0.8790, 0.3434] 0.8571 [-0.1388, 1.8580]
(0.4919) (0.3994) (0.6139)

d = 0.65 -0.0453 [-1.1205, 1.0748] -1.0503 [-1.7891, -0.3067] 0.0161 [-1.3120, 1.2156]
(0.5674) (0.4693) (0.7651)

d = 0.7 0.0866 [-1.5172, 1.6274] -1.4948 [-2.4798, -0.5188] -0.7250 [-2.3715, 0.9577]
(0.8271) (0.6167) (0.9520)

d = 0.75 0.2596 [-2.0182, 2.5673] -0.7242 [-1.7790, 0.3998] 0.6415 [-0.8437, 2.0133]
(1.2530) (0.6966) (0.8792)

d = 0.8 0.4381 [-3.8990, 4.6216] 0.8767 [-0.8703, 2.5578] 3.5775 [1.1035, 5.8811]
(2.2005) (1.1105) (1.5692)

Notes: (i) d indicates the treatment intensity; (ii) standard errors calculated using cross-fitted
formula are shown in parentheses; (iii) 90%-CI using multiplier bootstrap shown in separate
columns; (iv) for all post-treatment period t = 1984, 1985, 1986, the baseline pre-treatment year is
t = 1983; (v) all the nuisance parameters are estimated nonparametrically using random forests.
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4.5 Empirical Application 2: Duflo (2001)

Duflo (2001) studies the impact of a large policy intervention (INPRES program) taken

place in Indonesia between 1973 and 1978. During this period, more than 60 thousands

elementary schools were constructed in various regions in Indonesia, which is equivalent

to about 2 schools per one thousand school-age children (see Duflo (2001) and Ashraf et

al. (2020) for additional background details). Nevertheless, the “intensity” of this policy

intervention was not uniform across Indonesia. In particular, Duflo (2001) models the

treatment intensity as the number of schools constructed per 1000 children under this

policy in each region. In the data set we consider, there are 161 regions, and the program

intensity varies widely across the regions. Therefore, we model the treatment intensity as

a continuous variable.

One of the main questions explored in Duflo (2001) is the effect of this policy on edu-

cational attainment. As pointed out in the study, there is another dimension of variation

in the treatment intensity: the cohort of children aged 12-17 in 1974 (cohort 0) would have

already passed the elementary school age when the policy first started so that this cohort

should not have benefited from the policy at all; on the other hand, the cohort aged 2-6

in 1974 (cohort 1) should have fully experienced the treatment. Moreover, based on the

treatment intensity, the author divides the regions into two groups (low intensity group

and high intensity group). Exploring the two-dimensional variations in treatment intensity

across regions and cohorts, Duflo (2001) initially attempts to estimate the causal effect of

this policy on the educational attainment by using a simple difference-in-differences design

under the usual parallel trend assumption (see Table 3 in Duflo (2001)).34

To study the treatment effect of this policy in our setting, we still consider the same

two cohorts, which will be our repeated cross-sections. On the other hand, while we also

use the low intensity regions as the control group, we will allow the treatment intensity to

vary at the district level in the high intensity group (treatment group). We consider the

following setup:

• let Yi denote the educational level of individual i, which is our outcome variable;

• let Ti = 1 if individual i belongs to the cohort 1 (age 2-6 in 1974) and Ti = 0 other

wise (age 12-17 in 1974);

34We want to emphasize that besides the simple DiD design mentioned here, Duflo (2001) explores the
effects of this policy on education and wage in various other research designs in great details. We only intend
to use this exercise as an illustration on how to apply the continuous DiD design and our nonparametric
estimator in an empirical setting and hopefully to showcase the potential usefulness of our methods.
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• the district level treatment intensity is defined as the schools constructed under this

policy per 1000 school-aged children in a given birth district (importantly, this ensures

the validity for the repeated cross section setup, as the treatment intensities are known

to both cohorts);

• we define the regions with treatment intensities at or below 40 percentile on the

distribution as the “low” group, and the regions with treatment intensities at or

above 60 percentile on the distribution as the “high” group;

• we normalize the “low” group to have treatment intensity D = 0;

• for the “high” group, we re-define the treatment intensity by subtracting the 40 per-

centile value of the treatment intensity on the overall distribution; this ensures that

the treatment intensities D = d for the high group fall under an interval [dL, dH ] with

dL > 0;

• we include the following covariates Xi: gender, religion, land ownership (as a proxy

for family wealth), community size, urban/rural residency;

• finally, for our sample, we consider all individuals who stayed in the regions they were

born, which is in contrast with Duflo (2001) in which the author considers the sample

of males with valid wage data.

Remark 4.4. Duflo (2001) divides the sample into low-intensity and high-intensity groups

based on the treatment intensity. Although we are not able to locate the exact criteria used

in Duflo (2001), we found that using the 40/60 cutoff roughly matches the mean difference

in treatment intensities between “low” and “high” groups in our setting to that in Duflo

(2001).

Remark 4.5. In our setting, we do not include the district level covariates, district fixed

effects, and birth-year fixed effects. In particular, since the treatment intensity (and hence

the treatment status) is defined at district level, the nonparametric machine learning methods

such as Random Forest and deep neural networks can often perfectly predict the treatment

status with such district level covariates, which creates issues for estimations due to the zeros

in the denominators. Moreover, since the cohorts are defined by the birth-year, including

birth-year fixed effects in the covariates will make the cohorts T and covariates X correlated,

which violates the sampling assumption in the repeated cross-sections setting.

Due to the discrepancy in the data, for comparison purposes, we first replicate the

baseline diff-in-diff result between low and high intensity regions (Di ∈ {0, 1} in this case)
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between cohorts (Ti ∈ {0, 1}) in Duflo (2001), using the following regression specification:

Yi = β0 + β1Ti + β2Di + β3(Ti ×Di) + εi

and we report the estimated ATT in the first row in Table 4. Similar to the results in table 3

in Duflo (2001), our replication results suggest that the treatment effect is positive but not

statistically significant. We also estimate the ATT with the double/debiased nonparametric

DiD estimator (with binary Di ∈ {0, 1}) proposed in Chang (2020) with the same covariates

we considered for our continuous DiD estimator. Specifically, for this DML estimator, we

estimate the nuisance parameters using deep neural networks, and we report the estimated

ATT in the second row in Table 4. We note that the nonparametric estimator from Chang

(2020) with covariates shows a much larger treatment effect and has statistical significance.

Table 4: Diff-in-Diff with Binary Treatment

dep var: educ ATT(D = 1) std. err sample size (N) covariates

Duflo (Basline) 0.0876 0.0710 41240 –

Chang (Nonparametric) 0.5237 0.1759 41240 X

For our continuous DiD estimator, we consider 17 different treatment intensities ranging

from 10-percentile to 90-percentile of the empirical distribution of the treatment intensities

in the treatment group. Here are the implementation details:

• we consider a 5-fold cross-fitting; in particular, we first randomly shuffle the data35

before splitting the sample.

• the density fD(d) and conditional expectation E[ T−λ
λ(1−λ)Y |D = d] are estimated using

a Gaussian kernel with bandwidth h = N−1/4;

• nuisance parameters EλY (X) and g(X) are estimated using either the Random Forest

(RF) or deep neural networks (DNN)36: for RF, we set the number of trees to 100

and the max-depth to 50; DNNs are implemented using multi-layer perceptron (MLP)

with ReLU activation and optimized using the popular Adam algorithm (Kingma and

Ba (2017));

• estimation of fJ(d|X): we use the cosine basis on [0, 2π], which roughly corresponds

to the support of the treatment; we consider J = N1/4 so that the under-smoothing

35The data we initially had was sorted by region. Without reshuffling, the sample splitting would have
resulted in observations with certain treatment intensities being contained in only one subsample.

36Both are readily available in the scikit-learn library in Python.
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Table 5: Diff-in-Diff with Continuous Treatment

(Random Forest) Bootstrap (Neural Network) Bootstrap
ATT(D = d) CI ATT(D = d) CI

α = 0.1 1.0065 [0.7743, 1.2474] 1.0193 [0.7586, 1.2675]
(0.2206) (0.2237)

α = 0.2 0.4428 [0.1843, 0.7116] 0.4519 [0.1690, 0.7284]
(0.2215) (0.2242)

α = 0.3 0.058 [-0.3434, 0.4730] 0.0706 [-0.4182, 0.5326]
(0.2967) (0.3113)

α = 0.4 1.5853 [1.2388, 1.9886] 1.5417 [1.1663, 1.8898]
(0.2872) (0.2857)

α = 0.5 0.8010 [0.4473, 1.1696] 0.8496 [0.4120, 1.2599]
(0.2890) (0.2977)

α = 0.6 0.7720 [0.4244, 1.0869] 0.7700 [0.4499, 1.0935]
(0.2803) (0.2767)

α = 0.7 0.8861 [0.6224, 1.1342] 0.8837 [0.6226, 1.1412]
(0.2632) (0.2646)

α = 0.8 -0.3350 [-0.7421, 0.0700] -0.4176 [-0.8074, -0.0273]
(0.3834) (0.3816)

α = 0.9 1.0055 [0.7257, 1.3195] 1.0152 [0.7227, 1.3018]
(0.4281) (0.4268)

Notes: (i) α indicates the treatment intensity d being the corresponding percentile values, with
standard errors calculated using cross-fitted formula in parentheses; (ii) 95%-CI using multiplier
bootstrap; (iii) in column 2, all the nuisance parameters are estimated using the Random Forest
(RF) methods; (iv) in column 3, all the nuisance parameters are estimated using the deep neural
network of multi-layer perceptron (MLP) class with ReLU activation

assumption is more plausible; each conditional expectation in fJ(d|X) is estimated

using the ML methods mentioned above;

• standard errors are calculated using the cross-fitted estimator defined in (44); we also

construct 95-percent bootstrap confidence intervals using the multiplier bootstrap

procedure defined in (45): we use Gaussian multipliers {ξi}Ni=1 with E[ξi] = V ar[ξi] =

1 for B = 1000 repetitions.

We present a few selected results for our estimator in Table 5, with visualizations in Figure 6

(since the results using either machine learning methods are relatively close, we only present

the graph with results using the Random Forest). In contrast to the binary treatment re-

sults, our results suggest that the ATTs vary widely across different treatment intensities.

In particular, for the nuisance parameters estimated using either the Random Forest (col-

umn 2) or deep neural network (column 3), we have large positive ATTs at some intensities

(e.g., 40 and 50 percentile values) but small and even negative values at other intensities.

One potential explanation is that, since the treatment is determined at the district level, the

variations may reflect other district-specific characteristics. Indeed, as commented in Duflo
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(2001), during the same period as the school constructions, there was also a large scale of

water and sanitation programs being implemented, which can be a potential confounding

factor. Unfortunately, as we mentioned previously, we are unable to include district-specific

covariates as they do not have enough variations, in which case ML estimators can use

such variables to predict the treatment status perfectly. We also want to emphasize that,

echoing Callaway et al. (2021), each of these ATTs is local in nature (i.e., on its own dose-

response curve), and the differences between ATTs, say ATT (d1) − ATT (d2), can not be

interpreted as the average causal response without further assumptions. Nevertheless, our

estimation results show significant heterogeneity in treatment effects, which suggests that

in practice, the researchers should fully explore the continuous nature of the treatments,

and our framework offers one avenue to achieve this.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-quantile of positive treatment intensity

1.0

0.5

0.0

0.5

1.0
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2.0

ATT at Selected Treatment Intensities (RF)

Continuous DiD
Duflo
Chang, DML

Figure 6: Diff-in-Diff with Continuous Treatment

5 Conclusion

In this paper, we have proposed a data-driven conditional density estimator that is feasi-

ble for potentially high-dimensional conditioning variables. This estimator is based on a

cross-validation procedure, and we have established an oracle inequality on its estimation

error. Importantly, this data-driven conditional density estimator has the potential to ac-

commodate any new machine learning methods (to estimate the conditional expectation

in each of the series terms). Thus our estimator can facilitate a better understanding of
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the dependence relationships between the economic variables albeit the richer data sources

and the increasing complexity of the economic models. Moreover, adding to the growing

list of economics applications where conditional densities play a crucial role, we study the

nonparametric difference-in-differences models with continuous treatments in detail. Such

models have important implications in empirical research, and we hope our methods can

provide new tools for researchers to analyze the effects of continuous treatment variables in

the future.
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A Proofs

A.1 Proof of Proposition 3.1

For the first claim, note that Y is assumed to be a Polish space, and in particular, any

compact subset of a Polish space is also Polish. Given that νY is a Radon measure37, by

7.14.13 in Bogachev (2007b), νY on BY is therefore separable. Then by 4.7.63 in Bogachev

(2007a), we conclude that L2(νY ) is separable.38

To show the second claim, let fY |X ∈ L2(νY ⊗ PX) and let {φj}∞j=1 be an orthonormal

basis on L2(νY ). By Fubini’s theorem,∫
f2
Y |X(y|x)dνY dPX <∞ =⇒ PX(x ∈ X :

∫
f2
Y |X(y|x)dνY <∞) = 1. (27)

That is, fY |X(·|x) ∈ L2(νY ) for almost every x ∈ X. Since {φj}∞j=1 is an orthonormal basis

on L2(νY ), by Parseval’s identity (e.g. Theorem 5.27 in Folland (1999)), for fY |X(·|x) ∈
L2(νY ), there exists {hj(x)}∞j=1 ∈ `2 such that

lim
J→∞

∞∑
j=J+1

h2
j (x) = lim

J→∞

∫
(fY |X(y|x)−

J∑
j=1

hj(x)φj(y))2dνY = 0 (28)

where the first equality holds by orthonormality. In particular, for every j,

hj(x) :=

∫
φj(y)fY |X(y|x)dνY . (29)

Since (29) holds for a.e. x ∈ X, by the definition of conditional expectation (formally, see

Proposition 10.4.18 in Bogachev (2007b)), we have

P (hj(X) = E[φj(Y )|X]) = 1. (30)

Then the claim follows from (28) and (30).

To show the final claim, again we assume fY |X ∈ L2(νY ⊗ PX) and let {φj}∞j=1 be an

orthonormal basis on L2(νY ). First, for one direction, assume

lim
J→∞

J∑
j=1

E[(E[φj(Y |X)])2] <∞. (31)

37We assume νY to be Radon to rule out pathological cases involving counting measures.
38Separable measure allows us to construct a countable dense subset of simple functions, and since simple

functions are dense in L2(νY ), then the result follows.
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Then by Fatou’s Lemma,

E[ lim
J→∞

J∑
j=1

(E[φj(Y |X)])2] ≤ lim
J→∞

J∑
j=1

E[(E[φj(Y |X)])2] <∞ (32)

which also implies that

P ( lim
J→∞

J∑
j=1

(E[φj(Y |X)])2] <∞) = 1. (33)

By orthonormality,

∫
(fY |X(y|X)−

J∑
j=1

E[φj(Y )|X]φj(y))2dνY

≤2

∫
f2
Y |X(y|X)dνY + lim

J→∞
2

J∑
j=1

(E[φj(Y )|X])2 ≡M(X)

By fY |X ∈ L2(νY ) and (32), M(X) ∈ L1(PX). Therefore, by the second second claim in

the theorem, applying dominated convergence theorem, we have

lim
J→∞

E[

∫
(fY |X(y|X)−

J∑
j=1

E[φj(Y )|X]φj(y))2dνY ] = 0. (34)

To show the other direction, assume (34) holds. Note that by orthonormality,

J∑
j=1

E[(E[φj(Y |X)])2] = E[
J∑
j=1

∫
(E[φj(Y |X)]φj(y))2dνY ].

Then by fY |X ∈ L2(νY ⊗ PX) and (34),

lim
J→∞

J∑
j=1

E[(E[φj(Y |X)])2]

= lim
J→∞

E[

J∑
j=1

∫
(E[φj(Y |X)]φj(y))2dνY ]

≤2E[

∫
f2
Y |X(y|X)dνY ] + 2 lim

J→∞
E[

∫
(fY |X(y|X)−

J∑
j=1

E[φj(Y )|X]φj(y))2dνY ] <∞.

This concludes the proof.
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A.2 Proof of Lemma 3.1

To prove the claim of the lemma, consider f̂(Y,X) as a function of two random variables

(Y,X), and let fY |X denote the true conditional density. Then by definition, we have

R(f̂) =E[

∫
f̂2(y,X)dνY (y)− 2f̂(Y,X)]

=E[

∫
(f̂(y,X)− fY |X(y|X))2dνY (y)−

∫
f2
Y |X(y|X)dνY (y)

+ 2

∫
f̂(y,X)fY |X(y|X)dνY (y)− 2f̂(Y,X)].

In particular, note that the first two terms give us the results, and we only need to show

that the last two terms add up to zero. To show this, we use the fact that fY |X is the

conditional density, and by the law of iterated expectations, we have

E[f̂(Y,X)] = E[E[f̂(Y,X)|X]] = E[

∫
f̂(y,X)fY |X(y|X)dνY (y)].

A.3 Proof of Theorem 3.1

The proof consists of three main parts. In the first part, we show the loss Q and risk R

are convex. Then we apply Lecué and Mitchell (2012) to upper bound the expected loss

in ‖ · ‖H norm by the sum of the “oracle” and a shifted empirical process. Finally, we use

boundedness of the true conditional density and of the estimators to control the shifted

empirical process.

Step 1: Convexity of Loss

We first show the loss Q((y, x), f) :=
∫
f2(y, x)dνY (y)− 2f(y, x) is convex in f . Take any

λ ∈ (0, 1) and f1, f2 ∈ L2(νY ⊗ PX), supressing (y, x) in Q for notation simplicity, we have

Q(λf1 + (1− λ)f2) =

∫
(λf1 + (1− λ)f2)2dνY (y)− 2(λf1 + (1− λ)f2)

≤
∫
λf2

1 + (1− λ)f2
2dνY (y)− 2(λf1 + (1− λ)f2)

= λQ(f1) + (1− λ)Q(f2)

which proves the convexity of Q in f for any (y, x) ∈ Y ×X. Then the convexity of risk
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R(f) := E[Q((Y,X), f)] follows from the monotonicity and linearity of expectation:

R(λf1 + (1− λ)f2) = E[Q((Y,X);λf1 + (1− λ)f2)]

≤ E[λQ((Y,X), f1) + (1− λ)Q((Y,X), f2)]

= λR(f1) + (1− λ)R(f2).

Using the convexity, next we are going to bound the risk.

Step 2: Bound on the Risk

This part of the proof is adapted from Lecué and Mitchell (2012), which we replicate here

for the sake of completeness. Since ĵ∗ is the index that minimizes Rn,K(f̂j), we define R∗n,K
as the minimized empirical risk, that is,

R∗n,K =
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )

ĵ∗
(D

(nT )
k )).

Then, the difference in the risk of our estimator and the risk at the true conditional density

satisfies

R(f̄ (n))−R(fY |X)

=(1 + a)(R∗n,K −Rn,K(fY |X)) + (R(f̄ (n) −R(fY |X))− (1 + a)(R∗n,K −Rn,K(fY |X))

≤(1 + a)(Rn,K(f̂j)−Rn,K(fY |X)) + (R(f̄ (n))−R(fY |X))− (1 + a)(R∗n,K −Rn,K(fY |X))

(35)

for all a > 0 and 1 ≤ j ≤ p. The inequality holds since R∗n,K is the minimized risk using

the dictionary and therefore R∗n,K ≤ Rn,K(f̂j) for all 1 ≤ j ≤ p.

Then, taking expectation of Rn,K(f̂j) − Rn,K(fY |X) with respect to the full data, we

have

E[Rn,K(f̂j)−Rn,K(fY |X)]

=E[
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )
j (D

(nT )
k ))−Q((Yi, Xi), fY |X)]

=
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

E[Q((Yi, Xi), f̂
(nT )
j (D

(nT )
k ))]− E[Q((Yi, Xi), fY |X)]

=ED(nT ) [R(f̂
(nT )
j (D(nT )))]−R(fY |X)

(36)
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where the second equality holds since {(Yi, Xi)}ni=1 are i.i.d. and validating sets D
(nV )
k

are disjoint from each other, and the last equality holds by law of iterated expectation.

Moreover, by convexity of R, we have

R(f̄ (n)) = R(
1

K

K∑
k=1

f̂
(nT )

ĵ∗
(D

(nT )
k ))

≤ 1

K

K∑
k=1

R(f̂
(nT )

ĵ∗
(D

(nT )
k )) :=

1

K

K∑
k=1

EP [Q((Y,X), f̂
(nT )

ĵ∗
(D

(nT )
k ))]

where P denotes the probability measure with respect to (Y,X). Then

E[(R(f̄ (n))−R(fY |X))− (1 + a)(R∗n,K −Rn,K(fY |X))]

≤E[
1

K

K∑
k=1

EP [Q((Y,X), f̂
(nT )

ĵ∗
(D

(nT )
k ))]− EP [Q((Y,X), fY |X)]

− (1 + a)(
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )

ĵ∗
(D

(nT )
k ))−Q((Yi, Xi), fY |X)))]

=
1

K

K∑
k=1

E[EP [(Q((Y,X), f̂
(nT )

ĵ∗
(D

(nT )
k ))−Q((Y,X), fY |X))]

− 1 + a

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )

ĵ∗
(D

(nT )
k ))−Q((Yi, Xi), fY |X)))]

≤E[ max
1≤j≤p

(P − (1 + a)PnV )(Q((Y,X), f̂
(nT )
j (D(nT )))−Q((Y,X), fY |X)))].

(37)

In the above derivation, the first inequality holds by convexity and definition of R,Rn,K ,

and the second equality holds by the i.i.d. sampling assumption and that the validating

sets D
(nV )
k are of equal size nV and are disjoint from each other. In the last line, we use P

to denote the expectation EP and PnV to denote the empirical average using validating set

D(nV ), and the inequality holds since ĵ∗ ∈ {1, · · · , p}.
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Then combining (35), (36), and (37), we have

E[‖f̄ (n) − fY |X‖2H ]

=E[R(f̄ (n))−R(fY |X)]

≤ min
1≤j≤p

(1 + a)ED(nT ) [R(f̂
(nT )
j (D(nT )))]−R(fY |X)

+ E[ max
1≤j≤p

(P − (1 + a)PnV )(Q((Y,X), f̂
(nT )
j (D(nT )))−Q((Y,X), fY |X)))]

≤ min
1≤j≤p

(1 + a)E[‖f̂ (nT )
j − fY |X‖2H ]

+ E[ max
1≤j≤p

(P − (1 + a)PnV )(Q((Y,X), f̂
(nT )
j (D(nT )))−Q((Y,X), fY |X)))]

(38)

where the first equality and last inequality hold by definition that R(f) = ‖f − fY |X‖2H −
‖fY |X‖2H and R(fY |X) = −‖fY |X‖2H for f = f̄ (n) and f = f̂

(nT )
j , and the second inequality

holds by boundedness assumption and monotonicity of expectations. In the next section,

we bound the the maximum of the shifted empirical process term in (38) using a modified

maximal inequality inspired by Lecué and Mitchell (2012) Lemma 5.3.

Step 3: A Maximal Inequality on Shifted Empirical Process

We first show a maximal inequality. Let {G1, · · · , Gp} be a set of measurable functions on

Z and {Zi}ni=1 ∼ Z a sequence of i.i.d. random variables with Z ∈ Z distributed according

to a probability measure PZ on Borel σ-algebra BZ . Moreover, we assume that, for all

1 ≤ j ≤ p, (i) E[Gj(Z)] ≥ 0; (ii) ‖Gj‖∞ ≤ M̃ for some constant M̃ ; (iii) (E[G2
j (Z)])1/2 ≤

C(E[Gj(Z)])1/2 for some constant C > 0.

Consider any x > 0,

P

[
max

1≤j≤p
E[Gj(Z)]− (1 + a)

1

n

n∑
i=1

Gj(Zi) ≥ x

]

≤
p∑
j=1

P

[
E[Gj(Z)]− (1 + a)

1

n

n∑
i=1

Gj(Zi) ≥ x

]

=

p∑
j=1

P

[
E[Gj(Z)]− 1

n

n∑
i=1

Gj(Zi) ≥
x+ aE[Gj(Z)]

1 + a

]

where the inequality holds by union bound. Then, for each term in the sum, we have for

some constants c1, c2, c3, c4,

P

[
E[Gj(Z)]− 1

n

n∑
i=1

Gj(Zi) ≥
x+ aE[Gj(Z)]

1 + a

]

55



≤ exp

(
−c1n

(
x+aE[Gj(Z)]

1+a )2

E[G2
j (Z)] + M̃

x+aE[Gj(Z)]
1+a

)

≤ exp

(
−c2n

[
(
x+aE[Gj(Z)]

1+a )2

E[G2
j (Z)]

∧
x+aE[Gj(Z)]

1+a

M̃

])

≤ exp

(
−c3n

[
(x+ aE[Gj(Z)])2

E[G2
j (Z)]

∧ x+ aE[Gj(Z)]

M̃

])

≤ exp

(
−c4n

[(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

∧ x+ aE[Gj(Z)]

M̃

])

where the first inequality holds by Bernstein’s inequality (see, for example, van der Vaart

and Wellner (1996) Lemma 2.2.9), the second inequality holds by definition (∧ is the

minimum operator), and the last inequality holds by the condition that (E[G2
j (Z)])1/2 ≤

C(E[Gj(Z)])1/2.

Note that, for x ≥ E[Gj(Z)], we have(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

≥
(
x+ aE[Gj(Z)]

x
1
2

)2

≥ x

where the second inequality holds by the assumption that E[Gj(Z)] ≥ 0, which implies that(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

∧ x+ aE[Gj(Z)]

M̃
&

x

M̃
.

On the other hand, for 0 < x < E[Gj(Z)],(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

>

(
aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

= a2E[Gj(Z)] > a2x

where the first inequality holds by x > 0, which again implies that(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

∧ x+ aE[Gj(Z)]

M̃
&

x

M̃
.

Therefore, we have for all x > 0,(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

∧ x+ aE[Gj(Z)]

M̃
&

x

M̃
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which implies that for some constant C1,

P

[
max

1≤j≤p
E[Gj(Z)]− (1 + a)

1

n

n∑
i=1

Gj(Zi) ≥ x

]
≤ p exp(−C1n

x

M̃
). (39)

Then, for any u > 0, we have

E

[
max

1≤j≤p
E[Gj(Z)]− (1 + a)

1

n

n∑
i=1

Gj(Zi)

]

≤
∫ ∞

0
P

[
max

1≤j≤p
E[Gj(Z)]− (1 + a)

1

n

n∑
i=1

Gj(Zi) ≥ x

]
dx

≤u+

∫ ∞
u

P

[
max

1≤j≤p
E[Gj(Z)]− (1 + a)

1

n

n∑
i=1

Gj(Zi) ≥ x

]
dx

≤u+ p

∫ ∞
u

exp(−C1n
x

M̃
)dx

≤u+ p
exp(−C1nu/M̃)

C1n/M̃

where the first inequality holds since E[X] =
∫
R 1x≥0(x)− FX(x)dx; the second inequality

holds since the probability is bounded above by one; the third inequality holds by 39; the last

inequality holds using the fact that
∫∞
u exp(−Bt)dt ≤ exp(−Bu)/B (see, for example, Lecué

and Mitchell (2012) Lemma 5.3). Define x(p) to be the unique solution of x = p exp(−x),

which satisfies x(p) ≤ log(ep). Let u = M̃x(p)/(nC1), we have

u+ p
exp(−C1nu/M̃)

C1n/M̃
=

2M̃x(p)

nC1
≤ 2M̃ log(ep)

C1n
.

Therefore, we conclude that, for some constant C2 that only depends on a and C1,

E

[
max

1≤j≤p
E[Gj(Z)]− (1 + a)

1

n

n∑
i=1

Gj(Zi)

]
≤ C2

M̃ log(p)

n
.

Note that throughout the derivation, we kept the constant M̃ explicit to accommodate the

possibility of M̃ potentially growing with p.39

Step 4: Bound on Shifted Empirical Process

Now we apply this maximal inequality in our case. We need to first verify the assumptions

39The constant C in assumption (ii), that (E[G2
j (Z)])1/2 ≤ C(E[Gj(Z)])1/2, can also depend on M̃ . The

proofs can be modified accordingly to accommodate this possibility.
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used in Step 3. Conditional on {f̂j}pj=1, let Z := (Y,X) and define

Gj(Z) := Q(Z, f̂j)−Q(Z, fY |X)

where Q is the loss defined in 9. First, by definition,

E[Gj(Z)] = E[Q(Z, f̂j)−Q(Z, fY |X)]

= ‖f̂j − fY |X‖2H − ‖fY |X‖2H − (−‖fY |X‖2H)

= ‖f̂j − fY |X‖2H
≥ 0.

Next, we check (E[G2
j ])

1/2 ≤ C(E[Gj ])
1/2. Plug in the definition of the loss Q, we have

(
E[G2

j (Z)]
) 1

2

=
(
E
[
(Q(Z, f̂j)−Q(Z, fY |X))2

]) 1
2

=

(
E

[
(

∫
f̂j(y|X)2dν(y)− 2f̂j(Y |X)−

∫
fY |X(y)2dνY (y)− 2fY |X)2

]) 1
2

=

(
E

[
(

∫
(f̂j(y|X)− fY |X(y))(f̂j(y|X) + fY |X(y))dνY (y)− 2(f̂j(Y |X)− fY |X))2

]) 1
2

≤
(
E

[
(

∫
(f̂j(y|X)− fY |X(y))(f̂j(y|X) + fY |X(y))dνY (y))2

]) 1
2

+ 2
(
E
[
(f̂j(Y |X)− fY |X)2

]) 1
2

where the last line holds by triangle inequality. For the first term above, we have

E

[(∫
(f̂j(y|X)− fY |X(y))(f̂j(y|X) + fY |X(y))dν(y)

)2
]

≤E
[∫

(f̂j(y|X)− fY |X(y))2dν(y)

∫
(f̂j(y|X) + fY |X(y))2dν(y)

]
≤E

[∫
(f̂j(y|X)− fY |X(y))2dν(y)(4M)

∫
(f̂j(y|X) + fY |X(y))

2
dν(y)

]

≤4ME

[∫
(f̂j(y|X)− fY |X(y))2dν(y)

]
=4M‖f̂j − fY |X‖2H
=4ME[Gj ]

where the first line holds by definition, the second line holds by Cauchy-Schwarz, the third

line holds by our assumption that {f̂j}pj=1 and fY |X are uniformly bounded by some constant
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M , the fourth line holds since (f̂j + fY |X)/2 is still a density that integrates to 1, and the

last line holds by definition of E[Gj ] = E[Q(f̂j)−Q(fY |X)] = ‖f̂j−fY |X‖2H . For the second

term, note that

E[(f̂j(Y |X)− fY |X)2]

= EXEY |X [(f̂j(Y |X)− fY |X)2]

= EX [

∫
(f̂j(Y |X)− fY |X)2fY |X(y)dν(y)]

≤ 2MEX [

∫
(f̂j(Y |X)− fY |X)2ν(y)]

= 2M‖f̂j − fY |X‖2H
= 2ME[Gj ]

where the second line holds by law of iterated expectation and the fourth line holds by

boundedness of fY |X . Therefore, combine above results together, we have shown that

(E[G2
j ])

1
2 ≤ 2M

1
2 (E[Gj ])

1
2

so we can take the constant C := 2M1/2.

Finally, we check ‖Gj‖∞ ≤ M̃ for some constant M̃ . By definition

‖Gj‖∞ = ‖
∫
f̂j(y|x)2dνY (y)− 2f̂j(y|x)−

∫
f2
Y |X(y|x)dνY (y)− 2fY |X(y|x)‖∞ ≤ 6M

where the inequality holds by boundedness of f̂j and fY |X , so we can take M̃ = 6M .

Then we apply Step 3 conditional on {f̂j}pj=1 and use the law of iterated expectation

and monotonicity of expectation to conclude. We want to emphasize that we can allow the

bound on the dictionary {f̂j}pj=1 to grow with p. For example, if the bound M = O(log(p)),

then there is one extra log(p) term (or some polynomial power of it) showing up in the rate

in the theorem.

A.4 Proof of Theorem 3.2

First, given that V is fixed, the training sample size nT and testing/validating sample

size nV are on the same order as n, so we will drop the subscripts. Let {φj}∞j=1 be an

orthonormal basis on L2(νY ) and let’s denote hj = E[φj(Y )|X] and ĥj the corresponding
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estimator. Then by definition, for a given j ∈ {1, · · · , p}, we have

E[‖f̂j − fY |X‖2H ] = E[‖
j∑

k=1

ĥkφk −
∞∑
k=1

hkφk‖2H ]

= E[‖
j∑

k=1

(ĥk − hk)φk −
∞∑

k=j+1

hkφk‖2H ]

= E[EX [

∫  j∑
k=1

(ĥk(X)− hk(X))φk(y)−
∞∑

k=j+1

hk(X)φk(y)

2

dνY (y)]]

= E[EX [

j∑
k=1

(
ĥk(X)− hk(X)

)2
+

∞∑
k=j+1

h2
k(X)]]

=

j∑
k=1

E[(ĥk(X)− hk(X))2] +

∞∑
k=j+1

E[h2
k(X)]

where the second to last equality holds by orthonormality of the basis {φj}∞j=1. By assump-

tion, for some constants δ, γ > 0, we have the variance E[(ĥk(X)−hk(X))2] � n−δ and bias∑∞
k=j+1E[h2

k(X)] . j−γ , which implies

E[‖f̂j − fY |X‖2H ] . jn−δ + j−γ .

Then minimizing over j, we have the minimizer j∗ = nδ/(γ+1). Given the assumption on p,

this minimizer can be attained in our dictionary of estimators, which gives us

min
1≤j≤p

E[‖f̂j − fY |X‖2H ] . n
− γ
γ+1

δ
.

Combine this result with the oracle inequality in 3.1, we have the desired result.

A.5 Proof of Theorem 3.3

Let hj(x) := E[φj(Y )|X = x] and ĥj(x) being its estimator. Let y ∈ Y. Then for any

J ≥ 1,

E[‖f̂J(y|X)− fY |X(y|X)‖2PX ]

=E[

∫
(
J∑
j=1

hj(x)φj(y)− fY |X(y|x))2dPX(x)]
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≤2E[

∫ J∑
j=1

(hj(x)− ĥj(x))2φ2
j (y)dPX(x)] + 2

∫
(

∞∑
j=J+1

hj(x)φj(y))2dPX(x).

First, we focus on the second term. By condition (iv), we have∫
(

∞∑
j=J+1

hj(x)φj(y))2dPX(x) .
∫

(c(x)J−γ/2)2dPX(x) = J−γ
∫
c2(x)dPX(x) . J−γ .

Note that this is the same upper bound on the bias as the MISE case.

Now consider the first term E[
∫ ∑J

j=1(hj(x)− ĥj(x))2φ2
j (y)dPX(x)]. Define the column

vector BJ(X) := (hj(X) − ĥj(X))Jj=1, PJ(y) := (φj(y))Jj=1, ΣJ := E[BJ(X)BJ(X)′], and

rewrite

E[

∫ J∑
j=1

(hj(x)− ĥj(x))2φ2
j (y)dPX(x)] = E[(PJ(y)′BJ(X))2] = PJ(y)′ΣJPJ(y).

Moreover, let EIG and EIG denote the largest and smallest eigenvalues of ΣJ respectively.

Then

PJ(y)′ΣJPJ(y) ≤ EIG · ‖PJ(y)‖22

=
‖PJ(y)‖22∫

‖PJ(y)‖22 dνY (y)
× EIG

EIG
× EIG

∫
‖PJ(y)‖22 dνY (y).

Note that ‖PJ(y)‖22/
∫
‖PJ(y)‖22 dνY (y) = O(1) by orthonormality, EIG/EIG = O(1) by

assumption, and the last term is bounded by

EIG

∫
‖PJ(y)‖22 dνY (y) ≤

∫
P ′J(y)ΣJPJ(y)dνY (y) =

J∑
j=1

E[(ĥj(X)− hj(X))2].

where the last equality holds by orthonormality. Combining above results, we have

E[‖f̂J(y|X)− fY |X(y|X)‖2PX ] . Jn−δ + J−γ

which is the same bound as in the MISE case. Then use the cross-validated Ĵ∗and Theorem

3.2, we conclude that

E[f̄(y|X)− fY |X(y|X)‖2PX ] . n
− γ
γ+1

δ ∨ log p

n
.
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A.6 Proof of Theorem 4.1

By definition, ATT (d) = E[Yt(d)− Yt(0)|D = d]. First,

E[Yt − Yt−1|D = d] = E[Yt(d)− Yt−1(0)|D = d]

by the fact that Yt = Yt(D) and Yt−1 = Yt−1(0).

Second,

E[(Yt − Yt−1)1{D = 0}
fD|X(d)

fD(d)P (D = 0|X)
]

= E[(Yt − Yt−1)
fD|X(d)

fD(d)P (D = 0|X)
|D = 0]P (D = 0)

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = 0]

fD|X(d|x)P (D = 0)

fD(d)P (D = 0|X = x)
fX|D=0(x)dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = d]

×
fD|X=x(d)P (D = 0)

fD(d)P (D = 0|X = x)

P (D = 0|X = x)fX(x)

P (D = 0)
dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = d]fX|D=d(x)dx

= E[(Yt(0)− Yt−1(0))|D = d]

where the first equality holds by the law total probability, second equality holds by law of

iterated expectation, the third equality holds by that Yt = Yt(D) and Yt−1 = Yt−1(0), the

fourth equality holds by Bayes’ rule and conditional parallel trend, and the fifth equality

holds by Bayes rule.

Then combining above results, we have

E[(Yt − Yt−1|D = d]− E[(Yt − Yt−1)1{D = 1}
fD|X(d)

fD(d)P (D = 0|X)
]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = d]

= E[Yt(d)− Yt(0)|D = d]

= ATT (d)

Next, for repeated cross-sections, we have

E[
T − λ
λ(1− λ)

Y |D = d]
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= E[E[
T − λ
λ(1− λ)

Y |D = d, T ]]

= E[
T − λ
λ(1− λ)

Y |D = d, T = 1]P (T = 1|D = d)

+ E[
T − λ
λ(1− λ)

Y |D = d, T = 0]P (T = 0|D = d)

= E[
1− λ

λ(1− λ)
Y |D = d, T = 1]λ+ E[

0− λ
λ(1− λ)

Y |D = d, T = 0](1− λ)

= E[Yt|D = d]− E[Yt−1|D = d]

= E[Yt − Yt−1|D = d]

where the first equality holds by law of iterated expectation, the second equality holds by

definition, and the last two equalities hold by assumption 4.2.

Similarly, by law of iterated expectation and assumption 4.2

E[
T − λ
λ(1− λ)

Y 1{D = 0}
fD|X(d)

fD(d)P (D = 0|X)
]

= E[
1− λ

λ(1− λ)
Y 1{D = 0}

fD|X(d)

fD(d)P (D = 0|X)
|T = 1]P (T = 1)

+ E[
0− λ

λ(1− λ)
Y 1{D = 0}

fD|X(d)

fD(d)P (D = 0|X)
|T = 0]P (T = 0)

= E[
1− λ

λ(1− λ)
Yt1{D = 0}

fD|X(d)

fD(d)P (D = 0|X)
|T = 1]λ

+ E[
0− λ

λ(1− λ)
Yt−11{D = 0}

fD|X(d)

fD(d)P (D = 0|X)
|T = 0](1− λ)

= E[(Yt − Yt−1)1{D = 0}
fD|X(d)

fD(d)P (D = 0|X)
]

and the claim follows from the repeated outcomes case.

A.7 Proof of Lemma 4.1

First consider the repeated outcomes case. Recall that the unadjusted score ϕJ takes the

form

ϕJ(Z, θJ , f
0
d , f

0
J (d|X), g0) := ∆Y 1{D = 0}

f0
J (d|X)

f0
d · g0(X)

− θ0J

where ∆Y = Yt − Yt−1, f0
d := fD(d), f0

J (d|X) := fD|X(d), g0(X) := P (D = 0|X).

We will add an adjustment term to the original score so that the new score satisfies

the Neyman orthogonality w.r.t. the infinite-dimensional parameters. Let md
J(D) :=
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∑J
j=1 φj(D)φj(d)1{D > 0}.

The two infinite-dimensional nuisance parameters are f0
J (X) and g0(X), and in par-

ticular, they satisfy f0
J (d|X) = E[md

J(D)|X] and g0(X) = E[1{D = 0}|X]. Then the

adjustment term cJ takes the form

cJ := (md
J(D)− f0

J (d|X))E[∂1ϕJ |X] + (1{D = 0} − g0(X))E[∂2ϕJ |X]

where ∂1 and ∂2 denotes the partial derivatives w.r.t. the positions of f0
J (d|X) and g0(X)

respectively. Then, we have

cJ = (md
J(D)− f0

J (d|X))
1

f0
d · g0(X)

E[∆Y 1{D = 0}|X]︸ ︷︷ ︸
:=E0

∆Y (X)

− (1{D = 0} − g0(X))
f0
J (d|X)

f0
d · g2

0(X)
E0

∆Y (X)

=
[md

J(D)− f0
J (d|X)]g0(X)− [1{D = 0} − g0(X)]f0

J (d|X)

f0
d · g2

0(X)
E0

∆Y (X)

=
md
J(D)g0(X)− 1{D = 0}f0

J (d|X)

f0
d · g2

0(X)
E0

∆Y (X)

Now it remains to show the new score ψJ := ϕJ + cJ satisfies Neyman orthogonality

wrt the nuisance parameters, f0
J (d|X), g0(X), and E0

∆Y (X). First, we need to check the

moment condition E[ψJ ] = 0. Since E[ϕJ ] = 0, we only need to check E[cJ ] = 0. Then we

have

E[cJ ] = E[
md
J(D)g0(X)− 1{D = 0}f0

J (d|X)

f0
d · g2

0(X)
E0

∆Y (X)]

= E[
E[md

J(D)|X]g0(X)− E[1{D = 0}|X]f0
J (d|X)

f0
d · g2

0(X)
E0

∆Y (X)]

= E[
f0
J (d|X)g0(X)− g0(X)f0

J (d|X)

f0
d · g2

0(X)
E0

∆Y (X)]

= 0

where the second equality holds by law of iterated expectation and the third equality holds

by the fact that E[md
J(D)|X] = f0

J (d|X) and E[1{D = 0}|X] = g0(X).

Second, we need to show the Gateaux derivative of the score wrt the nuisance parameters

η0 := (f0
J (d|X), g0(X), E0

∆Y (X)) vanishes at zero, that is, we need to show

∂rE[ψJ(η0 + r(η − η0))]|r=0 = 0.

64



By the definition of Gateaux derivative, it suffices to show the partial derivative is zero

w.r.t. each nuisance parameter separately. In particular, in the following derivations, by

assumption in the lemma, we can use the dominated convergence theorem to interchange

the derivatives and the expectations.

w.r.t fJ(d|X):

∂rE[ψJ(f0
J (d|X) + r(fJ(d|X)− f0

J (d|X)))]|r=0

= E[(∆Y 1{D = 0} 1

f0
d · g0(X)

− 1{D = 0}
f0
d · g2

0(X)
E0

∆Y (X))∆fJ(X)]

= E[(E[∆Y 1{D = 0}|X]
1

f0
d · g0(X)

− E[1{D = 0}|X]

f0
d · g2

0(X)
E0

∆Y (X))∆fJ(X)]

= E[(E0
∆Y (X)

1

f0
d · g0(X)

− g0(X)

f0
d · g2

0(X)
E0

∆Y (X))∆fJ(X)]

= 0

where the first equality holds by definition with ∆fJ(X) := fJ(d|X) − f0
J (d|X), second

equality holds by law of iterated expectation, and the third equality holds by the fact that

E[∆Y 1{D = 0}|X] = E0
∆Y (X) and E[1{D = 0}|X] = g0(X).

w.r.t g(X):

∂rE[ψJ(g0(X) + r(g(X)− g0(X)))]|r=0

= E[(−∆Y 1{D = 0}
f0
J (d|X)

f0
d · g2

0(X)
− (

md
J(D)

f0
d · g2

0(X)
− 2 ·

1{D = 0}f0
J (d|X)

f0
d · g3

0(X)
)E0

∆Y (X))∆g(X)]

= E[(−E[∆Y 1{D = 0}|X]
f0
J (d|X)

f0
d · g2

0(X)
− (

E[md
J(D)|X]

f0
d · g2

0(X)

− 2
E[1{D = 0}|X]f0

J (d|X)

f0
d · g3

0(X)
)E0

∆Y (X))∆g(X)]

= 0

where the first equality holds by definition with ∆g(X) := g(X) − g0(X), second equality

holds by law of iterated expectation, and the last equality holds by that E[∆Y 1{D =

0}|X] = E0
∆Y (X), E[md

J(D)|X] = f0
J (d|X), and E[1{D = 0}|X] = g0(X).

w.r.t E∆Y (X):

∂rE[ψJ(E0
∆Y (X) + r(E∆Y (X)− E0

∆Y (X)))]|r=0

= E[
md
J(D)g0(X)− 1{D = 0}f0

J (d|X)

f0
d · g2

0(X)
∆E(X)]
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= E[
E[md

J(D)|X]g0(X)− E[1{D = 0}|X]f0
J (d|X)

f0
d · g2

0(X)
∆E(X)]

= 0

where the first line holds by definition with ∆E(X) = E∆Y (X) − E0
∆Y (X), the second

equality holds by law of iterated expectation, and the last equality holds by the definition

that E[md
J(D)|X] = f0

J (d|X) and E[1{D = 0}|X] = g0(X).

This shows that the score ψJ is Neyman orthogonal w.r.t. the infinite-dimensional nui-

sance parameters. Note that for the repeated cross section case, replace ∆Y with T−λ
λ(1−λ)Y ,

the identical arguments follows.

A.8 Proof of Theorem 4.2 (Repeated Outcomes)

Let TN be the set of square integrable η := (fJ , g(X), E∆Y (X)) such that assumption 4.7

holds. Let FN , EN be the set of f > 0 and Ed∆Y such that |f − f0
d | ≤ (Nh)−1/2 and

|Ed∆Y − Ed∆Y,0| ≤ (Nh)−1/2. Then assumption 4.7 implies that, with probability tending to

1, η̂k ∈ TN , f̂d,k ∈ FN , and Êd∆Y ∈ EN .

Recall that our estimator is K−1
∑K

k=1 ÂTT (d)k where

ÂTT (d)k :=
1

n

∑
i∈Ik

Êd∆Y,k︸ ︷︷ ︸
(1)

−∆Yi1{Di = 0}
f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)︸ ︷︷ ︸
(2)

−
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

Ê∆Y,k(Xi)︸ ︷︷ ︸
(3)

We present the proof in three subsections. We focus on (1) in the first part. The second

part concerns (2) and (3), which contains majority of the proof. In the last subsection, we

combine the previous results and conclude.

Part I: Kernel Regression Results

We first consider (1), Êd∆Y,k := Ê[∆Y |D = d], which is estimated using kernel (and the

density fd is estimated using the same bandwidth h):

Êd∆Y,k =
1
n

∑
i∈Ik Kh(Di − d)∆Yi

f̂d,k
, where f̂d,k =

1

n

∑
i∈Ik

Kh(Di − d)
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where Kh(u) := h−1(u/h) as defined in the assumption. Then, with the standard results

for kernel regression (e.g., Härdle (1990)), we have

1

K

K∑
i=1

Êd∆Y,k − Ed∆Y

=
1

N

N∑
i=1

Kh(Di − d)∆Yi − E[(Kh(D − d)∆Y ])

fd

− E[∆Y |D = d]

fd

1

N

N∑
i=1

Kh(Di − d)− E[Kh(D − d)] + op((Nh)−1/2).

Part II: Orthogonal Scores

To simplify notation, let θ̂J be defined as

θ̂J :=
1

K

K∑
k=1

1

n

∑
i∈Ik

∆Yi1{Di = 1}
f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)

+
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

Ê∆Y,k(Xi).

Then we can decompose the following difference as

θ̂J − θ0 = θ̂J − θ0J︸ ︷︷ ︸
(†)

+ θ0J − θ0︸ ︷︷ ︸
(††)

where (†) will be our main focus while the bias term (††) will be taken care of by under-

smoothing requirement in assumption 4.7.

By definition,

√
N(θ̂J − θ0J) =

√
N

1

K

K∑
k=1

En,k[ψJ(Zi, θ0,J , f̂d,k, η̂k)] (40)

where ψJ is defined as in (20), and En,k(f) = 1
n

∑
i∈Ik f(Zi) denotes the empirical average.

Then we have the following decomposition, using Taylor’s theorem:

√
N(θ̂J − θ0J) =

√
N

1

K

K∑
k=1

En,k[ψJ(Z, θ0J , f
0
d , η̂k)] (41)

+
√
N

1

K

K∑
k=1

En,k[∂fψJ(Z, θ0J , f
0
d , η̂k)](f̂d,k − f0

d ) (42)
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+
√
N

1

K

K∑
k=1

En,k[∂
2
fψJ(Z, θ0J , f̄k, η̂k)](f̂d,k − f0

d )2 (43)

where f̄k ∈ (f0
d , f̂d,k). This decomposition provides a roadmap for the remaining of the proof

in part II. There are roughly four steps. In the first step, we show the second-order term (43)

vanishes rapidly and does not contribute to the asymptotic variance. In the second step,

we bound first-order term (42), which potentially contributes to the asymptotic variance.

In step 3, we expand (41) around the nuisance parameter η̂k, in which the first-order bias

disappears by Neyman orthogonality, and we show the second order terms have no impact

on the asymptotics. In the final step, we verify the results used in the first two steps and

conclude.

Step 1: Second Order Terms

First, we consider (43). By triangle inequality, we have

|En,k[∂2
fψJ(Z, θ0J , f̄k, η̂k)]− E[∂2

fψJ(Z, θ0J , f
0
d , η0)]|

≤ |En,k[∂2
fψJ(Z, θ0J , f̄k, η̂k)]− En,k[∂2

fψJ(Z, θ0J , f
0
d , η0)]|︸ ︷︷ ︸

J1k

+ |En,k[∂2
fψJ(Z, θ0J , f

0
d , η0)]− E[∂2

fψJ(Z, θ0J , f
0
d , η0)]|︸ ︷︷ ︸

J2k

.

To bound J2k, note that since f0
d is bounded away from zero and the score ψ is bounded

by MJ ,

∂2
fψJ(Z, θ0J , f

0
d , η0) =

2

(f0
d )2

(ψJ(Z, θ0J , f
0
d , η0) + θ0J)

which implies that

E[J2
2k] ≤

1

N
E[(∂2

fψJ(Z, θ0J , f
0
d , η0))2] .M2

J/N

and by Markov’s inequality, we have J2k ≤ Op(MJ/
√
N). For J1k, we have

E[J2
1k|Ick] = E[|En,k[∂2

fψJ(Z, θ0J , f̄k, η̂k)]− En,k[∂2
fψJ(Z, θ0J , f

0
d , η0)]|2|Ick]

≤ sup
f∈FN ,η∈TN

E[|∂2
fψJ(Z, θ0J , f, η)− ∂2

fψJ(Z, θ0J , f
0
d , η0)|2|Ick]

≤ sup
f∈FN ,η∈TN

E[|∂2
fψJ(Z, θ0J , f, η)− ∂2

fψJ(Z, θ0J , f
0
d , η0)|2]

.M2
Jε

2
N (a)

Then by conditional Markov’s inequality, (f̂d,k − f0
d )2 ≤ Op((Nh)−1), and assumption 4.5,
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we conclude that (43) = op(1). We will show (a) at the end of this section.

Step 2: First-Order Terms

To bound (42), we use first the triangle inequality to obtain the decomposition

|En,k[∂fψJ(Z, θ0J , f
0
d , η̂k)]− E[∂fψJ(Z, θ0J , f

0
d , η0)]|

≤ |En,k[∂fψJ(Z, θ0J , f
0
d , η̂k)]− En,k[∂fψJ(Z, θ0J , f

0
d , η0)]|︸ ︷︷ ︸

J3k

+ |En,k[∂fψJ(Z, θ0J , f
0
d , η0)]− E[∂fψJ(Z, θ0J , f

0
d , η0)]|︸ ︷︷ ︸

J4k

.

We first bound J4k. Note that since f0
d is bounded away from zero and the score ψ is

bounded by MJ , we have

∂fψJ(Z, θ0J , f
0
d , η0) = − 1

f0
d

(ψJ(Z, θ0J , f
0
d , η0) + θ0J)

which implies that

E[J2
4k] ≤

1

N
E[(∂fψJ(Z, θ0J , f

0
d , η0))2] .M2

J/N

and by Markov’s inequality, we have J4k ≤ Op(MJ/
√
N). With the assumption that

MJ/
√
N = o(1), we have J4k = op(1).

Second, to bound J3k, note that

E[J2
3k|Ick] = E[|En,k[∂fψJ(Z, θ0J , f

0
d , η̂k)]− En,k[∂fψJ(Z, θ0J , f

0
d , η0)]|2|Ick]

≤ sup
η∈TN

E[|∂fψJ(Z, θ0J , f
0
d , η)− ∂fψJ(Z, θ0J , f

0
d , η0)|2|Ick]

≤ sup
η∈TN

E[|∂fψJ(Z, θ0J , f
0
d , η)− ∂fψJ(Z, θ0J , f

0
d , η0)|2]

.M2
Jε

2
N (b)

where the first equation holds by definition, the second line holds by Cauchy-Schwarz and

the third line holds by the construction that all the parameters are estimated using auxiliary

sample Ick. Then we conclude with the conditional Markov’s inequality that J3k = op(1).

Therefore,

En,k[∂fψJ(Z, θ0J , f
0
d , η̂k)]→p E[∂fψJ(Z, θ0J , f

0
d , η0)] := S0

f

Note that the kernel density estimator satisfies (f̂d,k − f0
d ) = Op((Nh)−1/2), so we can
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rewrite (42) as

(42) =
√
N

1

K

K∑
k=1

En,k[∂fψJ(Z, θ0J , f
0
d , η̂k)](f̂d,k − f0

d )

=
√
N

1

K

K∑
k=1

S0
f (f̂d,k − f0

d ) + op(h
−1/2)

=
√
N

1

N

N∑
i=1

S0
f (Kh(Di − d)− E[Kh(D − d)]) + op(h

−1/2)

where the last equality holds by the definition that f̂d,k − f0
d = (N − n)−1

∑
i∈Ick

Kh(Di −
d)−E[Kh(D−d)]+O(h2) (where N−n is the sample size of each auxiliary subsample used

to estimate the nuisance parameters), the under-smoothing assumption that
√
Nh2 ≤ O(1),

and the fact that K−1
∑K

k=1(f̂d,k −E[Kh(D− d)]) = 1
N

∑N
i=1(Kh(Di− d)−E[Kh(D− d)]).

In particular, the kernel expression in the last line is mean-zero and it will contribute to

the asymptotic variance.

Step 3: “Neyman Term”

Now we consider (41), which we can rewrite as

√
N

1

K

K∑
k=1

En,k[ψJ(Z, θ0J , f
0
d , η̂k)]

=
1√
N

N∑
i=1

ψJ(Zi, θ0J , f
0
d , η0)

+
√
N

1

K

K∑
k=1

(En,k[ψJ(Z, θ0J , f
0
d , η̂k)]− En,k[ψJ(Zi, θ0J , f

0
d , η0)])︸ ︷︷ ︸

Rnk

Since K is fixed, n = O(N), it suffices to show that Rnk = op(N
−1/2MJ), so it vanishes

when scaled by the (square root of) asymptotic variance. Note that by triangle inequality,

we have the following decomposition

|Rn,k| ≤
R1k +R2k√

n

where

R1k := |Gnk[ψJ(Z, θ0J , f
0
d , η̂k)]−Gnk[ψJ(Z, θ0J , f

0
d , η0)]|

with Gnk(f) =
√
n(Pn − P )(f) denote the empirical process, and with some abuse of nota-
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tion, it will also be used to denote conditional version of the empirical process conditioning

on the auxiliary sample Ick. Moreover,

R2k :=
√
n|E[ψJ(Z, θ0J , f

0
d , η̂k)|Ick]− E[ψJ(Z, θ0J , f

0
d , η0)]|.

For simplicity, let’s suppress other arguments in ψ and denote ψiη := ψJ(Zi, θ0J , f
0
d , η).

First, we consider R1k, in which

Gnkψη̂k −Gnkψη0 =
√
n

1

n

n∑
i=1

ψiη̂k − ψ
i
η0
− E[ψiη̂k |I

c
k]− E[ψiη0

]︸ ︷︷ ︸
:=∆ik

In particular, it can be shown that E[∆ik∆jk] = 0 for all i 6= j using the i.i.d. assumption

of the data and that the nuisance parameter η̂k is estimated using the auxiliary sample.

Then, we have

E[R2
1k|Ick] ≤ E[∆2

ik|Ick]

≤ E[(ψiη̂k − ψ
i
η0

)2|Ick]

≤ sup
η∈TN

E[(ψiη − ψiη0
)2|Ick]

≤ sup
η∈TN

E[(ψiη − ψiη0
)2]

.M2
Jε

2
N (c)

and using the conditional Markov’s inequality, we conclude that R1k = op(MJ). Now we

bound R2k. Note that by definition of the score, E[ψJ(Z, θ0J , f
0
d , η0)] = 0, so it suffices to

bound E[ψJ(Z, θ0J , f
0
d , η̂k)|Ick]. Suppressing other arguments in the score, define

hk(r) := E[ψJ(η0 + r(η̂k − η0))|Ick]

where by definition hk(0) = E[ψJ(η0)|Ick] = 0 and hk(1) = E[ψJ(η̂k)|Ick]. Use Taylor’s

theorem, expand hk(1) around 0, we have

hk(1) = hk(0) + h′k(0) +
1

2
h
′′
k(r̄), r̄ ∈ (0, 1).

Note that, by Neyman orthogonality,

h′k(0) = ∂ηE[ψJ(η0)][η̂k − η0] = 0
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and use that fact that hk(0) = 0, we have

R2k =
√
n|hk(1)| =

√
n|h′′k(r̄)|

≤ sup
r∈(0,1),η∈TN

√
n|∂2

rE[ψJ(η0 + r(η̂k − η0))]|

.
√
nMJε

2
N (d)

Combining above results, we conclude that

√
NRn,k .MJεN +

√
NMJε

2
N .

and for εN = o(N−1/4), we have
√
NRn,k = op(MJ).

Step 4: Auxiliary Results

In this section, we show the auxiliary results (a)-(d) used in the previous steps. We first

show (c) as it will also be used to bound other results.

Recall that

(c) : sup
η∈TN

E[(ψη − ψη0)2] .M2
Jε

2
N .

By definition,

ψη − ψη0

= ∆Y 1{D = 0} fJ(X)

f0
d · g(X)

+
mJ(D)g(X)− 1{D = 0}fJ(X)

f0
d · g2(X)

E∆Y (X)

−∆Y 1{D = 0}
f0
J (X)

f0
d · g0(X)

−
mJ(D)g0(X)− 1{D = 0}f0

J (X)

f0
d · g2

0(X)
E0

∆Y (X)

=
∆Y 1{D = 0}

f0
d

(
fJ(X)

g(X)
−
f0
J (X)

g0(X)
) +

mJ(D)

f0
d

(
E∆Y (X)

g(X)
−
E0

∆Y (X)

g0(X)
)

− 1{D = 0}
f0
d

(
fJ(X)E∆Y (X)

g2(X)
−
f0
J (X)E0

∆Y (X)

g2
0(X)

)

. C1(fJ(X)− f0
J (X)) + C2MJ(g(X)− g0(X)) + C3MJ(E∆Y (X)− E0

∆Y (X))

where the last line can be shown using the usual plus-minus trick with C1, C2, C3 being

some constants and MJ = ‖mJ‖∞. Then by the definition of TN and the assumptions on

the rate of convergence of the nuisance parameters,

sup
η∈TN

E[(ψη − ψη0)2] . ‖fJ − f0
J‖2P,2 +M2

J‖g − g0‖2P,2 +M2
J‖E∆Y − E0

∆Y ‖2P,2

+MJ‖fJ − f0
J‖P,2‖g − g0‖P,2 +MJ‖fJ − f0

J‖P,2‖E∆Y − E0
∆Y ‖P,2
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+M2
J‖g − g0‖P,2‖E∆Y − E0

∆Y ‖P,2
.M2

Jε
2
N

This shows (c) with εN = o(N−1/4).

Next, we consider (a). We want to show

(a) : sup
f∈FN ,η∈TN

E[|∂2
fψJ(Z, θ0J , f, η)− ∂2

fψJ(Z, θ0J , f
0
d , η0)|2] . ε2

N

By definition,

∂2
fψJ(Z, θ0J , f, η) =

2

f2
(ψJ(Z, θ0J , f, η) + θ0J)

∂3
fψJ(Z, θ0J , f, η) = − 6

f3
(ψJ(Z, θ0J , f, η) + θ0J).

Then using Taylor’s theorem expand around f0
d , we

∂2
fψJ(Z, θ0J , f, η)− ∂2

fψJ(Z, θ0J , f
0
d , η0)

= ∂2
fψJ(Z, θ0J , f

0
d , η)− ∂2

fψJ(Z, θ0J , f
0
d , η0) + ∂3

fψJ(Z, θ0J , f̄ , η)(f − f0
d )

=
2

(f0
d )2

(ψJ(Z, θ0J , f
0
d , η)− ψJ(Z, θ0J , f

0
d , η0)) (?)

− 6

f̄3
(ψJ(Z, θ0J , f̄ , η) + θ0J)(f − f0

d ) (??)

By the assumption, on FN , f̄ and f0
d are bounded away from zero, so that (?) is the leading

term that can be bounded with (c). Moreover, for εN = o(N−1/4), (??) is of smaller order

and can be ignored. Therefore we conclude that

sup
f∈FN ,η∈TN

E[|∂2
fψJ(Z, θ0J , f, η)− ∂2

pψJ(Z, θ0J , f
0
d , η0)|2] .M2

Jε
2
N .

Similarly, by definition,

∂fψJ(Z, θ0J , f
0
d , η)− ∂fψJ(Z, θ0J , f

0
d , η0)

= − 1

f0
d

(ψJ(Z, θ0J , f
0
d , η)− ψJ(Z, θ0J , f

0
d , η0))

and using the same arguments as before, (b) follows from (a) and (c).
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Last, we show (d). It suffices to show

sup
r∈(0,1),η∈TN

|∂2
rE[ψJ(η0 + r(η̂k − η0))]| .MJε

2
N .

By definition,

ψJ(η0 + r(η̂k − η0))

=
∆Y 1{D = 0}(f0

J + r(fJ − f0
J ))

f0
d · (g0 + r(g − g0))

− θ0J

+
1

f0
d

(
mJ

g0 + r(g − g0)
−

1{D = 0}(f0
J + r(fJ − f0

J ))

(g0 + r(g − g0))2
)(E0

∆Y
+ r(E∆Y

− E0
∆Y

))

and we take the second order partial derivatives wrt r term by term. For simplicity, we

omit the derivations, and we have

∂2
rψJ(η0 + r(η̂k − η0))

� C1∆f∆g + C2(∆g)
2 + C3MJ∆E∆g + C4MJ(∆g)

2 + C5∆f∆E + C6∆E∆g

where ∆f := fJ − f0
J , ∆g := g − g0, and ∆E := E∆Y − E0

∆Y . Then by triangle inequality,

Cauchy-Schwarz, and the assumption on the space of nuisance parameters TN , we conclude

∂2
rE[ψJ(η0 + r(η̂k − η0))] . ‖fJ − f0

J‖P,2‖g − g0‖P,2 + ‖fJ − f0
J‖P,2‖E∆Y − E0

∆Y ‖P,2
+MJ‖g − g0‖P,2‖E∆Y − E0

∆Y ‖P,2 +MJ‖g − g0‖2P,2
.MJε

2
N .

Part III: Conclusion

Combining the results in Part I and Part II, we have

ÂTT (d)−ATT (d)

=
1

N

N∑
i=1

Kh(Di − d)∆Yi − E[(Kh(D − d)∆Y ]

f0
d

1

− E[∆Y |D = d]

f0
d

1

N

N∑
i=1

(Kh(Di − d)− E[Kh(D − d)]) 2

− 1

N

N∑
i=1

ψJ(Zi, θ0J , f
0
d , η0) 3

74



− 1

N

N∑
i=1

S0
f (Kh(Di − d)− E[Kh(Di − d)]) 4

+ op((Nh)−1/2) + op(N
−1/2MJ) 5

+ θ0 − θ0J 6

where each of 1 − 4 is an average of i.i.d zero-mean terms with the variance growing

either with kernel bandwidth h or the series term J .

Since J and h grows with N , we need a triangular array CLT to establish the asymptotic

results. The Lyapunov conditions are easy to verify for the kernel terms 1 , 2 , 4 . More-

over, by assumption, E[(md
J(D))2] � M̃2

J and E[|md
J(D)|3] � M̃3

J , and using boundedness

assumptions on the nuisance parameters, we have E[ψ2
J ] � M̃2

J and E[ψ3
J ] � M̃3

J , then the

Lyapunov condition is also satisfied for 3 . Then by CLT, together with assumptions 4.7

and 4.8, we have

ÂTT (d)−ATT (d)

σN/
√
N

→d N(0, 1)

with σN defined by

σ2
N := E[

( 1

f0
d

(Kh(D − d)∆Y − E[Kh(D − d)∆Y ])

− ψJ + (
θJ
f0
d

−
Ed∆Y
f0
d

)(Kh(D − d)− E[Kh(D − d)])
)2

]

where we have used the fact that S0
f = −θJ/f0

d .

B Supplementary Material

First, we extend our results to the repeated cross-sections setting.

Algorithm B.1 (CDID Estimator). Let {Ik}Kk=1 denote a random partition of a random

sample {Zi}Ni=1, each with equal size n = N/K, and for each k ∈ {1, · · · ,K}, let Ick := N \Ik
denote the complement.

• (Repeated Cross-Sections) For each k, construct

ÂTT (d)k :=
1

n

∑
i∈Ik

ÊdλY,k −
Ti − λ̂k

λ̂k(1− λ̂k)
Yi1{Di = 0}

f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)

−
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

ÊλY,k(Xi)
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where f̂d,k, ÊdλY,k, f̂J,k, ĝk, ÊλY,k are the estimators of fd, E[λY |D = d], fJ(d|X), g(X)

and EλY (X) respectively using the rest of the sample Ick. In particular, f̂d,k, ÊdλY,k
are kernel estimators, ĝk, ÊλY,k are estimated using ML methods (e.g. deep neural

networks), and each term in f̂J,k is estimated estimated using ML for a large J .

• Average through the K estimators to obtain the final estimator

ÂTT (d) :=
1

K

K∑
k=1

ÂTT (d)k.

Analogous to the repeated outcomes setting, we make the following assumptions.

Assumption B.1 (Bounds).

(i) for some constants 0 < c < 1 and 0 < C <∞, fd > c, c < λ < 1− c, |E[ T−λ
λ(1−λ)Y |D =

d]| < C, and |EλY (X)| < C almost surely;

(ii) for some constants 0 < κ < 1
2 and for all J ≥ 1, κ < fJ(d|X), g(X) < 1 − κ almost

surely;

(iii) fd and E[ λ−T
λ(1−λ)Y |D = d] are twice continuously differentiable at D = d ∈ (dL, dH)

and have bounded second derivative.

Assumption B.2 (Rates).

(i) kernel bandwidth satisfies Nh→∞ and
√
Nh5 = o(1)and

√
N

max{MJ , h
− 1

2 }
E[|

∞∑
j=J+1

E[φj(D)1{D > 0}|X]φj(d)|] = o(1);

(ii) MJ/
√
N = o(1);

(iii) with probability tending to 1, ‖f̂J − fJ(d|X)‖P,2 ≤ MJεN , ‖ĝ(X) − g(X)‖P,2 ≤ εN ,

‖ÊλY (X)− EλY (X)‖P,2 ≤ εN ;

(iv) with probability tending to 1, ‖ÊλY (X)‖P,∞ < C, κ < ‖f̂J(X)‖P,∞ < 1 − κ, and

κ < ‖ĝ(X)‖P,∞ < 1− κ.

Theorem B.1 (Repeated Cross-Sections). Suppose assumptions 4.2, 4.3, 4.4, 4.5, 4.6,

B.1, and B.2 hold. Then for εN = o(N−1/4),

ÂTT (d)−ATT (d)

σN/
√
N

→d N(0, 1)
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where

σ2
N := E[

( 1

fd
(Kh(D − d)Y λ − E[Kh(D − d)Y λ])

− ψJ + (
θJ
fd
−
EdλY
fd

)(Kh(D − d)− E[Kh(D − d)])
)2

].

and ψJ is defined as in (21) and Y λ := T−λ
λ(1−λ)Y .

Similarly as before, we construct

σ̂2
N :=

1

K

K∑
k=1

En,k[
( 1

f̂d,k
(Kh(D − d)Y λ̂k − Enc,k[Kh(D − d)Y λ̂k ])

− ψJ(Z, θ̂J , λ̂k, f̂d,k, η̂k)

+ (
θ̂J

f̂d,k
−
ÊdλY,k
f̂d,k

)(Kh(D − d)− Enc,k[Kh(D − d)])
)2

]

(44)

where

θ̂J :=
1

N

K∑
k=1

∑
i∈Ik

Ti − λ̂k
λ̂k(1− λ̂k)

Yi1{Di = 0}
f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)

+
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

ÊλY,k(Xi),

Y λ̂k := T−λ̂k
λ̂k(1−λ̂k)

Y , and Enc,k denotes the empirical average using the auxiliary sample Ick.

Then, the 1−α confidence interval can be constructed as [ÂTT (d)−z1−α/2σ̂N/
√
N, ÂTT (d)+

z1−α/2σ̂N/
√
N ] where z1−α/2 denotes the 1− α/2 quantile of the standard normal random

variable.

Alternatively, one can use a multiplier bootstrap type of procedure to construct the

confidence interval for our estimator. Specifically, let {ξi}Ni=1 be an i.i.d. sequence of sub-

exponential random variables independent of {Yi, Ti, Di, Xi}Ni=1 such that E[ξi] = V ar[ξ2
i ] =

1. Then for each b = 1, · · · , B, we draw such a sequence {ξi}Ni=1 and construct

ÂTT (d)
∗
b :=

1

N

K∑
k=1

∑
i∈Ik

ξi

(
ÊdλY,k −

Ti − λ̂k
λ̂k(1− λ̂k)

Yi1{Di = 0}
f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)

−
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

ÊλY,k(Xi)
) (45)
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Let ĉα be the α’s quantile of {ÂTT (d)
∗
b − ÂTT (d)}Bb=1, and we construct the confidence

interval as [ÂTT (d)− ĉ1−α/2, ÂTT (d)− ĉα/2].

B.1 Proof of Theorem B.1 (Repeated Cross-Sections)

The proof for the repeated cross-sections case follows very closely to that of the repeated

outcomes case, with only minor modifications due to the presence of a new parameter

λ = P (T = 1), which can be estimated at parametric rate.

Let TN be the set of square integrable η := (fJ , g(X), EλY (X)) such that assumption

B.1 holds. Let FN , EN be the set of f > 0 and EdλY such that |f − f0
d | ≤ (Nh)−1/2 and

|EdλY − EdλY,0| ≤ (Nh)−1/2. Then assumption B.2 implies that, with probability tending to

1, η̂k ∈ TN , f̂d,k ∈ FN , λ̂k ∈ PN , and ÊdλY ∈ EN .

First, recall that for 1 ≤ k ≤ K,

ÂTT (d)k :=
1

n

∑
i∈Ik

ÊdλY,k︸ ︷︷ ︸
(1)

− Ti − λ̂k
λ̂k(1− λ̂k)

Yi1{Di = 0}
f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)︸ ︷︷ ︸
(2)

−
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

ÊλY,k(Xi)︸ ︷︷ ︸
(3)

We first focus on (1), and then on (2) and (3).

Part I: Kernel Regression Results

We first consider the (1), ÊdλY,k := Ê[ T−λ
λ(1−λ)Y |D = d], which is estimated using kernel (and

the density fd is estimated using the same bandwidth h):

ÊdλY,k =

1
n

∑
i∈Ik Kh(Di − d) Ti−λ̂k

λ̂k(1−λ̂k)
Yi

f̂d,k

where

f̂d,k =
1

n

∑
i∈Ik

Kh(Di − d); λ̂k =
1

n

∑
i∈Ik

Ti.
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For notation simplicity, denote Y λ := T−λ
λ(1−λ)Y . Then using the similar arguments as in the

repeated outcomes case, we have

1

K

K∑
i=1

ÊdλY,k − EdλY

=
1

N

N∑
i=1

Kh(Di − d)Y λ
i − E[(Kh(D − d)Y λ])

fd

− E[Y λ|D = d]

fd

1

N

N∑
i=1

Kh(Di − d)− E[Kh(D − d)] + op((Nh)−1/2).

Part II: Orthogonal Scores

Let θ̂J be defined as

θ̂J :=
1

K

K∑
k=1

1

n

∑
i∈Ik

Ti − λ̂k
λ̂k(1− λ̂k)

Yi1{Di = 1}
f̂J,k(d|Xi)

f̂d,k · ĝk(Xi)

+
md
J(Di)ĝk(Xi)− 1{Di = 0}f̂J,k(d|Xi)

f̂d,k · ĝ2
k(Xi)

ÊλY,k(Xi).

Then by definition,

√
N(θ̂J − θ0J) =

√
N

1

K

K∑
k=1

En,k[ψJ(Zi, θ0,J , λ̂k, f̂d,k, η̂k)] (46)

where ψJ is defined as in (21), and En,k(f) = 1
n

∑
i∈Ik f(Zi) denotes the empirical average.

Then by multivariate version of Taylor’s theorem,

√
N(θ̂J − θ0J) =

√
N

1

K

K∑
k=1

En,k[ψJ(Z, θ0J , λ0, f
0
d , η̂k)] (47)

+
√
N

1

K

K∑
k=1

En,k[∂λψJ(Z, θ0J , λ0, f
0
d , η̂k)](λ̂k − λ0) (48)

+
√
N

1

K

K∑
k=1

En,k[∂fψJ(Z, θ0J , λ0, f
0
d , η̂k)](f̂d,k − f0

d ) (49)

+
√
N

1

K

K∑
k=1

En,k[∂
2
λψJ(Z, θ0J , λ̄k, f̄k, η̂k)](λ̂k − λ0)2 (50)
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+
√
N

1

K

K∑
k=1

En,k[∂
2
fψJ(Z, θ0J , λ̄k, f̄k, η̂k)](f̂d,k − f0

d )2 (51)

+
√
N

1

K

K∑
k=1

En,k[∂λ∂fψJ(Z, θ0J , λ̄k, f̄k, η̂k)](f̂d,k − f0
d )(λ̂k − λ0) (52)

where λ̄k ∈ (λ0, λ̂k) and f̄k ∈ (f0
d , f̂d,k). All the second order terms (50)-(52) can be shown to

be op(1). The first-order term (49) can be analyzed in the same way as the repeat outcomes

case. Moreover, since λ̂k = En,kTi converges at parametric rate while the kernel estimator

f̂d,k converges at slower rate, the influence of (48) on the asymptotic variance is negligible.

The main term (47) can be analyzed in the same way as in the repeated outcomes case.

Step 1: Second Order Terms

First, we consider (50). By triangle inequality, we have

|En,k[∂2
λψJ(Z, θ0J , λ̄k, f̄k, η̂k)]− E[∂2

λψJ(Z, θ0J , λ0, f
0
d , η0)]|

≤ |En,k[∂2
λψJ(Z, θ0J , λ̄k, f̄k, η̂k)]− En,k[∂2

λψJ(Z, θ0J , λ0, f
0
d , η0)]|︸ ︷︷ ︸

J1k

+ |En,k[∂2
λψJ(Z, θ0J , λ0, f

0
d , η0)]− E[∂2

λψJ(Z, θ0J , λ0, f
0
d , η0)]|︸ ︷︷ ︸

J2k

To bound J2k, since 0 < c < λ0 < 1− c and the score ψ is bounded by MJ , we have

∂2
λψJ(Z, θ0J , λ0, f

0
d , η0) .MJ

and hence

E[J2
2k] ≤

1

N
E[(∂2

λψJ(Z, θ0J , λ0, f
0
d , η0))2] .M2

J/N.

Then by Markov’s inequality, we have J2k ≤ Op(MJ/
√
N). For J1k, note that

E[J2
1k|Ick] = E[|En,k[∂2

λψJ(Z, θ0J , λ̄k, f̄k, η̂k)]− En,k[∂2
λψJ(Z, θ0J , λ0, f

0
d , η0)]|2|Ick]

≤ sup
λ∈PN , f∈FN

η∈TN

E[|∂2
λψJ(Z, θ0J , λ, f, η)− ∂2

λψJ(Z, θ0J , λ0, f
0
d , η0)|2|Ick]

≤ sup
λ∈PN , f∈FN

η∈TN

E[|∂2
λψJ(Z, θ0J , λ, f, η)− ∂2

λψJ(Z, θ0J , λ0, f
0
d , η0)|2]

.M2
Jε

2
N (a)

where the first equation holds by definition, the second line holds by Cauchy-Schwarz and
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the third line holds by the construction that all the parameters are estimated using auxiliary

sample Ick. Then by conditional Markov’s inequality, (λ̂k−λ)2 ≤ Op(N−1), and assumption

B.1, we conclude that (50) = op(1). We will show (a) at the end of this section.

Term (51) is bounded in the same way as the repeated outcomes case. By triangle

inequality, we have

|En,k[∂2
fψJ(Z, θ0J , λ̄k, f̄k, η̂k)]− E[∂2

fψJ(Z, θ0J , λ0, f
0
d , η0)]|

≤ |En,k[∂2
fψJ(Z, θ0J , λ̄k, f̄k, η̂k)]− En,k[∂2

fψJ(Z, θ0J , λ0, f
0
d , η0)]|︸ ︷︷ ︸

J3k

+ |En,k[∂2
fψJ(Z, θ0J , λ0, f

0
d , η0)]− E[∂2

fψJ(Z, θ0J , λ0f
0
d , η0)]|︸ ︷︷ ︸

J4k

.

To bound J4k, note that since f0
d is bounded away from zero and the score ψ is bounded

by MJ ,

∂2
fψJ(Z, θ0J , λ0, f

0
d , η0) =

2

(f0
d )2

(ψJ(Z, θ0J , λ0, f
0
d , η0) + θ0J) .MJ

which implies that

E[J2
4k] ≤

1

N
E[(∂2

fψJ(Z, θ0J , λ0, f
0
d , η0))2] .M2

J/N

and by Markov’s inequality, we have J4k ≤ Op(MJ/
√
N). For J3k, we have

E[J2
3k|Ick] = E[|En,k[∂2

fψJ(Z, θ0J , λ̄k, f̄k, η̂k)]− En,k[∂2
fψJ(Z, θ0J , λ0, f

0
d , η0)]|2|Ick]

≤ sup
λ∈PN , f∈FN

η∈TN

E[|∂2
fψJ(Z, θ0J , λ, f, η)− ∂2

fψJ(Z, θ0J , λ0, f
0
d , η0)|2|Ick]

≤ sup
λ∈PN , f∈FN

η∈TN

E[|∂2
fψJ(Z, θ0J , λ, f, η)− ∂2

fψJ(Z, θ0J , λ0, f
0
d , η0)|2]

.M2
Jε

2
N (b)

Then by conditional Markov’s inequality, (f̂d,k − f0
d )2 ≤ Op((Nh)−1), and assumption B.1,

we conclude that (51) = op(1). We postpone the proof of (b) to the end of this section.

Finally, we can bound (52) using similar arguments as those for (50) and (51). To avoid

repetitiveness, we only highlight the difference. In particular, we need

sup
λ∈PN , f∈FN

η∈TN

E[|∂λ∂fψJ(Z, θ0J , λ̄k, f̄k, η̂k)− ∂λ∂fψJ(Z, θ0J , λ0, f
0
d , η0)|2] .M2

Jε
2
N (c)
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and using conditional Markov’s inequality, (f̂d,k − fd)(λ̂k − λ0) ≤ Op(N
−1h−1/2), and as-

sumption B.1, we conclude that (52) = op(1). Claim (c) will be shown later. This shows

that all the second order terms are negligible in the asymptotic distribution.

Step 2: First-Order Terms

We first consider (48). By triangle inequality, we have

|En,k[∂λψJ(Z, θ0J , λ0, f
0
d , η̂k)]− E[∂λψJ(Z, θ0J , λ0, f

0
d , η0)]|

≤ |En,k[∂λψJ(Z, θ0J , λ0, f
0
d , η̂k)]− En,k[∂λψJ(Z, θ0J , λ0, f

0
d , η0)]|︸ ︷︷ ︸

J5k

+ |En,k[∂λψJ(Z, θ0J , λ0, f
0
d , η0)]− E[∂λψJ(Z, θ0J , λ0, f

0
d , η0)]|︸ ︷︷ ︸

J6k

.

To bound J6k, note that since λ0 is bounded away from zero and the score ψ is bounded by

MJ ,

∂λψJ(Z, θ0J , λ0, f
0
d , η0) .MJ

which implies that

E[J2
6k] ≤

1

N
E[(∂λψJ(Z, θ0J , λ0, f

0
d , η0))2] .M2

J/N

and by Markov’s inequality, we have J6k ≤ Op(MJ/
√
N). With the assumption that

MJ/
√
N = o(1), we have J6k = op(1).

On the other hand, for J5k, note that

E[J2
5k|Ick] = E[|En,k[∂λψJ(Z, θ0J , λ0, f

0
d , η̂k)]− En,k[∂λψJ(Z, θ0J , λ0, f

0
d , η0)]|2|Ick]

≤ sup
η∈TN

E[|∂λψJ(Z, θ0J , λ0, f
0
d , η)− ∂λψJ(Z, θ0J , λ0, f

0
d , η0)|2|Ick]

≤ sup
η∈TN

E[|∂λψJ(Z, θ0J , λ0, f
0
d , η)− ∂λψJ(Z, θ0J , λ0, f

0
d , η0)|2]

.M2
Jε

2
N (d)

where the first equation holds by definition, the second line holds by Cauchy-Schwarz and

the third line holds by the construction that all the parameters are estimated using auxil-

iary sample Ick. Then we conclude with conditional Markov’s inequality that J5k = op(1).

Therefore,

En,k[∂λψJ(Z, θ0J , λ0, f
0
d , η̂k)]→p E[∂λψJ(Z, θ0J , λ0, f

0
d , η0)] := S0

λ
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Note that (λ̂k − λ0) = Op(N
−1/2), we can rewrite (48) as

(48) =
√
N

1

K

K∑
k=1

En,k[∂λψJ(Z, θ0J , λ0, f
0
d , η̂k)](λ̂k − λ0)

=
√
N

1

K

K∑
k=1

S0
λ(λ̂k − λ0) + op(1)

=
√
N

1

N

N∑
i=1

S0
λ(Ti − λ0) + op(1)

where the last equality holds by the definition that λ̂k − λ0 = (N − n)−1
∑

i∈Ick
Ti − λ0 and

the fact that K−1
∑K

k=1(λ̂k−λ0) = 1
N

∑N
i=1(Ti−λ0). We remark that, since S0

λ = E[∂λψ
0
J ]

is bounded by a constant and λ̂ converges at parametric rate, (48) vanishes when scaled by

the square-root of the asymptotic variance.

Term (49) will be bounded using the same argument as in the repeated outcomes setting.

First, by triangle inequality

|En,k[∂fψJ(Z, θ0J , λ0, f
0
d , η̂k)]− E[∂fψJ(Z, θ0J , λ0, f

0
d , η0)]|

≤ |En,k[∂fψJ(Z, θ0J , λ0, f
0
d , η̂k)]− En,k[∂fψJ(Z, θ0J , λ0, f

0
d , η0)]|︸ ︷︷ ︸

J7k

+ |En,k[∂fψJ(Z, θ0J , λ0, f
0
d , η0)]− E[∂fψJ(Z, θ0J , λ0, f

0
d , η0)]|︸ ︷︷ ︸

J8k

.

We first bound J8k. Note that since f0
d is bounded away from zero and the score ψ is

bounded by MJ , we have

∂fψJ(Z, θ0J , λ0, f
0
d , η0) = − 1

f0
d

(ψJ(Z, θ0J , λ0, f
0
d , η0) + θ0J) .MJ

which implies that

E[J2
8k] ≤

1

N
E[(∂fψJ(Z, θ0J , λ0, f

0
d , η0))2] .M2

J/N

and by Markov’s inequality, we have J8k ≤ Op(MJ/
√
N). With the assumption that

MJ/
√
N = o(1), we have J8k = op(1).

Second, to bound J7k, note that

E[J2
7k|Ick] = E[|En,k[∂fψJ(Z, θ0J , λ0, f

0
d , η̂k)]− En,k[∂fψJ(Z, θ0J , λ0, f

0
d , η0)]|2|Ick]
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≤ sup
η∈TN

E[|∂fψJ(Z, θ0J , λ0, f
0
d , η)− ∂fψJ(Z, θ0J , λ0, f

0
d , η0)|2|Ick]

≤ sup
η∈TN

E[|∂fψJ(Z, θ0J , λ0, f
0
d , η)− ∂fψJ(Z, θ0J , λ0, f

0
d , η0)|2]

.M2
Jε

2
N (e)

where the first equation holds by definition, the second line holds by Cauchy-Schwarz and

the third line holds by the construction that all the parameters are estimated using auxiliary

sample Ick. Then we conclude with the conditional Markov’s inequality that J7k = op(1).

Therefore,

En,k[∂fψJ(Z, θ0J , λ0, f
0
d , η̂k)]→p E[∂fψJ(Z, θ0J , λ0, f

0
d , η0)] := S0

f

Note that under the assumption, (f̂d,k − f0
d ) = Op((Nh)−1/2), we can rewrite (49) as

(49) =
√
N

1

K

K∑
k=1

En,k[∂fψJ(Z, θ0J , λ0, f
0
d , η̂k)](f̂d,k − f0

d )

=
√
N

1

K

K∑
k=1

S0
f (f̂d,k − f0

d ) + op(h
−1/2)

=
√
N

1

N

N∑
i=1

S0
f (Kh(Di − d)− E[Kh(D − d)]) + op(h

−1/2)

where the last equality holds by the definition that f̂d,k − f0
d = (N − n)−1

∑
i∈Ick

Kh(Di −
d)− E[Kh(D − d)] +O(h2), the under-smoothing assumption that

√
Nh2 ≤ O(1), and the

fact that K−1
∑K

k=1(f̂d,k − E[Kh(D − d)]) = 1
N

∑N
i=1(Kh(Di − d) − E[Kh(D − d)]). This

term will contribute to the asymptotic variance.

Step 3: “Neyman Term”

Now we consider (47), which can be shown using the same argument as the repeated

outcomes case.

√
N

1

K

K∑
k=1

En,k[ψJ(Z, θ0J , λ0, f
0
d , η̂k)]

=
1√
N

N∑
i=1

ψJ(Zi, θ0J , λ0, f
0
d , η0)

+
√
N

1

K

K∑
k=1

(En,k[ψJ(Z, θ0J , λ0, f
0
d , η̂k)]− En,k[ψJ(Zi, θ0J , λ0, f

0
d , η0)])︸ ︷︷ ︸

Rnk
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Since K is fixed, n = O(N), it suffices to show that Rnk = op(N
−1/2MJ), so it vanishes

when scaled by the (square root of) asymptotic variance. Note that by triangle inequality,

we have the following decomposition

|Rn,k| ≤
R1k +R2k√

n

where

R1k := |Gnk[ψJ(Z, θ0J , λ0, f
0
d , η̂k)]−Gnk[ψJ(Z, θ0J , λ0, f

0
d , η0)]|

with Gnk(f) =
√
n(Pn − P )(f) denote the empirical process, and with some abuse of nota-

tion, it will also be used to denote conditional version of the empirical process conditioning

on the auxiliary sample Ick. Moreover,

R2k :=
√
n|E[ψJ(Z, θ0J , λ0, f

0
d , η̂k)|Ick]− E[ψJ(Z, θ0J , λ0, f

0
d , η0)]|.

For simplicity, let’s suppress other arguments in ψ and denote ψiη := ψJ(Zi, θ0J , λ0, f
0
d , η).

First, we consider R1k, in which

Gnkψη̂k −Gnkψη0 =
√
n

1

n

n∑
i=1

ψiη̂k − ψ
i
η0
− E[ψiη̂k |I

c
k]− E[ψiη0

]︸ ︷︷ ︸
:=∆ik

In particular, it can be shown that E[∆ik∆jk] = 0 for all i 6= j using the i.i.d. assumption

of the data and that the nuisance parameter η̂k is estimated using the auxiliary sample.

Then, we have

E[R2
1k|Ick] ≤ E[∆2

ik|Ick]

≤ E[(ψiη̂k − ψ
i
η0

)2|Ick]

≤ sup
η∈TN

E[(ψiη − ψiη0
)2|Ick]

≤ sup
η∈TN

E[(ψiη − ψiη0
)2]

.M2
Jε

2
N (f)

and using the conditional Markov’s inequality, we conclude that R1k = op(MJ). Now we

bound R2k. Note that by definition of the score, E[ψJ(Z, θ0J , λ0, f
0
d , η0)] = 0, so it suffices

to bound E[ψJ(Z, θ0J , λ0, f
0
d , η̂k)|Ick]. Suppressing other arguments in the score, define

hk(r) := E[ψJ(η0 + r(η̂k − η0))|Ick]
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where by definition hk(0) = E[ψJ(η0)|Ick] = 0 and hk(1) = E[ψJ(η̂k)|Ick]. Use Taylor’s

theorem, expand hk(1) around 0, we have

hk(1) = hk(0) + h′k(0) +
1

2
h
′′
k(r̄), r̄ ∈ (0, 1).

Note that, by Neyman orthogonality,

h′k(0) = ∂ηE[ψJ(η0)][η̂k − η0] = 0

and use that fact that hk(0) = 0, we have

R2k =
√
n|hk(1)| =

√
n|h′′k(r̄)|

≤ sup
r∈(0,1),η∈TN

√
n|∂2

rE[ψJ(η0 + r(η̂k − η0))]|

.
√
nMJε

2
N (g)

Combining above results, we conclude that

√
NRn,k .MJεN +

√
NMJε

2
N .

and for εN = o(N−1/4), we have
√
NRn,k = op(MJ).

Step 4: Auxiliary Results

In this section, we show the auxiliary results (a)-(g) used in the previous steps. Note that

replacing ∆Y with T−λ
λ(1−λ)Y , we can show claims (b),(e),(f),(g) using the same arguments

as (a),(b),(c),(d) respectively in the repeated outcomes case. Hence it remains to show (a),

(c), and (d).

First, recall that

(a) : sup
λ∈PN , f∈FN

η∈TN

E[|∂2
λψJ(Z, θ0J , λ, f, η)− ∂2

λψJ(Z, θ0J , λ0, f
0
d , η0)|2] .M2

Jε
2
N .

In particular,

∂2
λψJ(λ, fd, η) =

∂2

∂λ2

(
T − λ
λ(1− λ)

)
1{D = 0} fJ(d|X)

fd · g(X)
.

Then by Taylor’s theorem,

∂2
λψJ(λ, fd, η)− ∂2

λψJ(λ0, f
0
d , η0) = ∂2

λψJ(λ0, f
0
d , η)− ∂2

λψJ(λ0, f
0
d , η0) (?)
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+ ∂2
λ∂fψJ(λ̄, f̄d, η)(fd − f0

d ) (??)

+ ∂3
λψJ(λ̄, f̄d, η)(λ− λ0) (? ? ?)

where λ̄ ∈ (λ, λ0) and f̄ ∈ (fd, f
0
d ). For the first term (?),

∂2
λψJ(λ0, f

0
d , η)− ∂2

λψJ(λ0, f
0
d , η0)

=
∂2

∂λ2

(
T − λ0

λ0(1− λ0)

)
Y 1{D = 0}

f0
d

(
fJ(d|X)

g(X)
−
f0
J (d|X)

g0(X)

)
=

∂2

∂λ2

(
T − λ0

λ0(1− λ0)

)
Y 1{D = 0}

f0
d

(
fJ(d|X)(g0(X)− g(X))− (f0

J (d|X)− fJ(d|X))g(X)

g(X)g0(X)

)
Moreover, by assumption B.1, for εN = o(N−1/4), (??) and (? ? ?) are of smaller order.

Therefore, by the definition of (PN , FN , TN ), boundedness of the nuisance parameters, and

triangle inequality, we have

sup
λ∈PN , f∈FN

η∈TN

E[|∂2
λψJ(Z, θ0J , λ, f, η)− ∂2

λψJ(Z, θ0J , λ0, f
0
d , η0)|2]

. sup
η∈TN

E[|∂2
λψJ(Z, θ0J , λ0, f

0
d , η)− ∂2

λψJ(Z, θ0J , λ0, f
0
d , η0)|2]

. sup
η∈TN

‖fJ(d|X)− f0
J (d|X)‖2P,2 + ‖g(X)− g0(X)‖2P,2

.M2
Jε

2
N

which shows (a). Similarly, by Taylor’s theorem,

∂λ∂fψJ(λ, fd, η)− ∂λ∂fψJ(λ0, f
0
d , η0) = ∂λ∂fψJ(λ0, f

0
d , η)− ∂λ∂fψJ(λ0, f

0
d , η0)

+ ∂λ∂
2
fψJ(λ̄, f̄d, η)(fd − f0

d )

+ ∂2
λ∂fψJ(λ̄, f̄d, η)(λ− λ0)

and (c) can be shown using similar arguments as (a).

Finally, we show (d):

sup
η∈TN

E[|∂λψJ(Z, θ0J , λ0, f
0
d , η)− ∂λψJ(Z, θ0J , λ0, f

0
d , η0)|2] .M2

Jε
2
N .

Note that

∂λψJ(λ, fd, η) =
∂

∂λ

(
T − λ
λ(1− λ)

)
1{D = 0} fJ(d|X)

fd · g(X)
.
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which implies

∂λψJ(λ0, f
0
d , η)− ∂λψJ(λ0, f

0
d , η0)

=
∂

∂λ

(
T − λ0

λ0(1− λ0)

)
Y 1{D = 0}

f0
d

(
fJ(d|X)

g(X)
−
f0
J (d|X)

g0(X)

)
=

∂

∂λ

(
T − λ0

λ0(1− λ0)

)
Y 1{D = 0}

f0
d

(
fJ(d|X)(g0(X)− g(X))− (f0

J (d|X)− fJ(d|X))g(X)

g(X)g0(X)

)
.

Therefore, by the definition of TN , boundedness of the nuisance parameters, and triangle

inequality, we have

sup
η∈TN

E[|∂λψJ(Z, θ0J , λ, f, η)− ∂λψJ(Z, θ0J , λ0, f
0
d , η0)|2]

. sup
η∈TN

‖fJ(d|X)− f0
J (d|X)‖2P,2 + ‖g(X)− g0(X)‖2P,2 .M2

Jε
2
N .

This completes the proof for the auxiliary results.

Part III: Conclusion

Combining the results from I and II, we have

ÂTT (d)−ATT (d)

=
1

N

N∑
i=1

Kh(Di − d)Y λ
i − E[(Kh(D − d)Y λ]

f0
d

1

− E[Y λ|D = d]

f0
d

1

N

N∑
i=1

(Kh(Di − d)− E[Kh(D − d)]) 2

− 1

N

N∑
i=1

ψJ(Zi, θ0J , λ0, f
0
d , η0) 3

− 1

N

N∑
i=1

S0
f (Kh(Di − d)− E[Kh(Di − d)]) 4

+ op((Nh)−1/2) + op(N
−1/2MJ) 5

+ θ0 − θ0J 6

where each of 1 − 4 is an average of i.i.d zero-mean terms with the variance growing

either with kernel bandwidth h or the series term J .

Since J and h grows with N , we need a triangular array CLT to establish the asymptotic
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results. The Lyapunov conditions are easy to verify for the kernel terms 1 , 2 , 4 . More-

over, by assumption, E[(md
J(D))2] � M̃2

J and E[|md
J(D)|3] � M̃3

J , and using boundedness

assumptions on the nuisance parameters, we have E[ψ2
J ] � M̃2

J and E[ψ3
J ] � M̃3

J , then the

Lyapunov condition is also satisfied for 3 . Then by CLT, together with assumptions B.1

and B.2, we have

ÂTT (d)−ATT (d)

σN/
√
N

→d N(0, 1)

with σN defined by

σ2
N := E[

( 1

f0
d

(Kh(D − d)Y λ − E[Kh(D − d)Y λ])

− ψJ + (
θJ
f0
d

−
EdλY
f0
d

)(Kh(D − d)− E[Kh(D − d)])
)2

]

where we have used the fact that S0
f = −θJ/f0

d .
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