Research
Working Papers
-
Continuous Difference-in-Differences with Double/Debiased Machine Learning. [link] (Accepted for Publication.)
Abstract: This paper extends difference-in-differences to settings with continuous treatments. Specifically, the average treatment effect on the treated (ATT) at any level of treatment intensity is identified under a conditional parallel trends assumption. Estimating the ATT in this framework requires first estimating infinite-dimensional nuisance parameters, particularly the conditional density of the continuous treatment, which can introduce substantial bias. To address this challenge, we propose estimators for the causal parameters under the double/debiased machine learning framework and establish their asymptotic normality. Additionally, we provide consistent variance estimators and construct uniform confidence bands based on a multiplier bootstrap procedure. To demonstrate the effectiveness of our approach, we apply our estimators to the 1983 Medicare Prospective Payment System (PPS) reform studied by Acemoglu and Finkelstein (2008), reframing it as a DiD with continuous treatment and nonparametrically estimating its effects.
-
Difference-in-Differences with Time-Varying Continuous Treatments Using Double/Debiased Machine Learning. [link] Joint work with Michel F. C. Haddad and Martin Huber.
Abstract: We propose a difference-in-differences (DiD) method for a time-varying continuous treatment and multiple time periods. Our framework assesses the average treatment effect on the treated (ATET) when comparing two non-zero treatment doses. The identification is based on a conditional parallel trend assumption imposed on the mean potential outcome under the lower dose, given observed covariates and past treatment histories. We employ kernel-based ATET estimators for repeated cross-sections and panel data adopting the double/debiased machine learning framework to control for covariates and past treatment histories in a data-adaptive manner. We also demonstrate the asymptotic normality of our estimation approach under specific regularity conditions. In a simulation study, we find a compelling finite sample performance of undersmoothed versions of our estimators in setups with several thousand observations.
-
Approximate Sparsity Class and Minimax Estimation. [link]
Abstract: Motivated by the orthogonal series density estimation in $L^2([0,1],\mu)$, in this project we consider a new class of functions that we call the approximate sparsity class. This new class is characterized by the rate of decay of the individual Fourier coefficients for a given orthonormal basis. We establish the $L^2([0,1],\mu)$ metric entropy of such class, with which we show the minimax rate of convergence. For the density subset in this class, we propose an adaptive density estimator based on a hard-thresholding procedure that achieves this minimax rate up to a $\log$ term.
Working in Progress
- An Oracle for Data-Driven High-Dimensional Conditional Density Estimation. (Forthcoming!)